DeepSeek实现对EXCEL的表格数据分析生成各种图表

在日常工作中,我们经常会使用EXCEL分析数据。但是表中的数据分析不是很直观,想生成图表又不会,今天教你怎么用DeepSeek解锁EXCEL数据分析结果生成图表。

首先,我们使用灵犀AI工具,新建一个会话,上传我们已经准备好的数据表格,进行上传,表格的主要信息如下:

按照专卖店,销售金额进行统计分析,生成饼状图。

按照,销售门店,销售金额的占比进行了一个饼状图的生成,这样我们分析就会很直观。同样,我们还可以生成其他图形:

直方图:

提示词:按照专卖店,销售金额进行统计分析,生成直方图

折线图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成折线图

条形图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成条形图

散点图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成散点图

面积图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成面积图

折线图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成折线图

条形图:

提示词:按照专卖店,销售金额,交易日期,进行统计分析,横轴为存档日期,日期字段只取日期,不取时间,生成条形图

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 Python 调用 DeepSeek 模型处理和分析表格数据 为了实现通过 Python 调用 DeepSeek 模型来处理和分析表格数据,可以按照以下方法完成: #### 数据加载与预处理 在开始调用模型前,需先将 Excel 表格中的数据读取到内存中并进行必要的清理工作。通常会使用 `pandas` 库来进行此操作。 ```python import pandas as pd # 加载Excel文件路径 file_path = r'F:\AI自媒体内容\AI行业数据分析\poetop50bots中文翻译.xlsx' # 将Excel表转换成DataFrame对象 data_frame = pd.read_excel(file_path) # 查看数据结构以便后续处理 print(data_frame.head()) ``` 上述代码片段展示了如何利用 Pandas 来导入指定位置上的 Excel 文件,并将其转化为 DataFrame 对象用于进一步的操作[^2]。 #### 初始化DeepSeek API接口 要调用 DeepSeek 的服务,则需要设置好相应的API参数以及认证信息(如果适用)。这里假设已经获取到了合法访问权限下的客户端实例化方式如下所示: ```python from deepseek import DSClient client = DSClient(api_key="your_api_key_here", base_url="https://api.deepseek.com/v1") ``` 注意替换 `"your_api_key_here"` 和 URL 地址为你实际拥有的密钥及服务器地址[^4]。 #### 构建请求体并向DeepSeek发送查询 构建合适的输入格式对于获得高质量的结果至关重要。下面的例子说明了怎样把先前准备好的 dataframe 中的部分列作为提示传递给 LLM 进行推理计算: ```python def generate_prompt(row): """Generate a prompt based on the row data.""" return f"Analyze this record: {row['ColumnA']} and {row['ColumnB']}. Provide insights." prompts = [generate_prompt(row) for _, row in data_frame.iterrows()] responses = [] for i, prompt in enumerate(prompts[:min(len(prompts), 10)]): # Limit to first ten records. response = client.generate(prompt=prompt) responses.append(response.text.strip()) data_frame["Analysis"] = responses ``` 在此部分中,我们遍历每一行记录生成对应的提问字符串并通过迭代器逐条提交至远程服务平台得到返回值后再存入新的字段里保存起来供以后查看或者绘图展示之用[^3]。 #### 结果可视化 最后一步就是依据所获知的信息制作图表等形式直观呈现出来便于理解接受程度更高的结论形式比如柱状图、饼图等等都可以尝试应用其中一种表现手法即可满足需求。 ```python import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.pie(data_frame['SomeValue'].value_counts(), labels=data_frame['SomeCategory'].unique(), autopct='%1.1f%%') plt.title('Distribution of Categories') output_image_path = r"F:\AI自媒体内容\AI行业数据分析\poetop50bots.png" plt.savefig(output_image_path) ``` 以上即完成了从原始资料提取直至最终成果展现全过程描述。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值