通过 MCP,我让 Cursor 直接操作起了我本地的数据库。无论是数据查询,还是数据的增删改,他都无所不能。
大模型从此真正成了我私人的数据助手。
说实话,像 DeepSeek 啊、豆包啊或者 claude 之类的大模型再牛逼,当你问他,我本地数据库里面有多少条数据,他就会显得有些爱莫能助。
因为他的训练集不可能会包含你的隐私数据。这也导致了大模型在个人或企业隐私数据的瓶颈。
以前,很多人直接搞个本地的大模型,然后将隐私数据投喂给大模型,来训练私有化大模型。
这是常见的做法,先不说私有化部署的成本,光是微调训练的过程就不是普通人能搞定的。
但现在有了 MCP,很多东西都可以重新再衡量了。
所以,MCP 究竟是啥?
MCP 是一种模型上下文协议,全称为 Model Context Protocol,它是由 Anthropic 公司建立并开源的。
简单来说,MCP 可以让大模型(比如 DeepSeek、豆包等)可以痛快的调用外部工具和资源(类似我们日常使用的 USB-C)。
正如 USB-C 简化了不同设备与计算机的连接方式,MCP 简化了 AI 模型与数据、工具和服务之间的交互方式。
MCP 被定位为 AI 智能体与外部工具、数据交互的开放标准协议,类似软件工程中的 HTTP,目标是成为 AI 生态的通用语言。
MCP 让大模型不再局限于静态知识库,而是能像人类一样调用搜索引擎、访问本地文件、连接 API 服务,甚至操作第三方软件。
目前 MCP 支持 STDIO 模式(本地运行)和 SSE 模式(远程服务)2 种模式。使用方式也很简单,在 Cursor、Cherry Studio 等客户端中可以直接使用。
真的只需要复制黏贴就可完成配置,做到了丝滑接入。
先以 Cursor 为例吧,简单介绍下配置。
Cursor 配置 MCP
这里以添加高德地图的 MCP Server 为例。首先进入 Cursor Settings:
添加高德地图的 MCP Server:
直接黏贴这段代码:
{ "mcpServers": { "amap-maps": { "command": "npx", "args": [ "-y", "@amap/amap-maps-mcp-server" ], "env": { "AMAP_MAPS_API_KEY": "这里填写你在高德申请的API key" } } } }
这样在 Cursor Settings 中就可以看到灯绿了,如果灯是红的,可以点击右侧的 Enabled 或者刷新即可。
那如何使用呢?选择 Agent 模式,模型选择 claude-3.7-sonnet。
现在,我就可以直接在 Cursor 中查询天气了。可以看到自动调用了 MCP。
还可以进行形成规划:
当然高德的这个 MCP Server 还提供了一系列的工具,大胆点的朋友可以一个个试试😂
数据库查询
聪明的你肯定会想,既然能直接通过高德的 MCP Server 访问高德服务,那是否有对应 MCP Server 可以访问本地自己数据库呢?
还真有,而且不止一个,实现原理也并不复杂,这里就以 Ian Borla 的 mcp-server-mysql 来进行配置。
在 Cursor 中直接操作本地或者远程数据库,只需要简单配置如下:
{ "mcpServers": { "MySQL": { "disabled": false, "timeout": 60, "command": "npx", "args": [ "mcprunner", "MYSQL_HOST=127.0.0.1", "MYSQL_PORT=3306", "MYSQL_USER=root", "MYSQL_PASS=123456", "MYSQL_DB=pmhub-project", "ALLOW_INSERT_OPERATION=true", "ALLOW_UPDATE_OPERATION=true", "ALLOW_DELETE_OPERATION=false", "--", "npx", "-y", "@benborla29/mcp-server-mysql" ] } } }
每个配置做下简单的解释:
配置好后,就可以进行丝滑的「用嘴」操作数据库了。无需任何编程经验。
1、查询某一个表有多少条数据:
噼里啪啦,自动调用 MCP 服务,查出数据,直接给到结果。
2、查询数据库中一共有多少张表?
帮我查下pmhub-project这个数据库中一共有几张表,分别是哪些表有哪些作用,用个表格帮我汇总下。
3、创建一个新表:
帮我创建一个学生表,要求有id、姓名、年龄、性别字段
MCP Server 权限问题,无法直接创建表,这里我已经提了 issue。
为了实验的顺利,这里我就先在 navicate 中创建学生表。然后进行接下来的操作。
4、添加一条记录
帮我在学生表中添加一条记录,张三,10岁,男。
说是已经添加成功,去数据库看看吧:
诚不欺我:
5、修改一条记录
刚才这一条数据不对,张三今年16岁了,帮我改下。
数据不仅做了更新,还友好的将更新时间也顺带更新了。这可真是太方便了 ba。
6、多表联查
为了验证多表联查场景,我新建一个课程表,有关联字段学生表中的 id。
Cursor 直接生成的代码:
CREATETABLE course ( id VARCHAR(64) NOTNULL COMMENT '课程id', course_name VARCHAR(100) NOTNULL COMMENT '课程名称', duration INTNOTNULL COMMENT '课程时长(分钟)', student_id VARCHAR(64) NOTNULL COMMENT '学生id', created_time DATETIME DEFAULTCURRENT_TIMESTAMP COMMENT '创建时间', updated_time DATETIME DEFAULTCURRENT_TIMESTAMPONUPDATECURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='课程表';
先插入一条测试数据:
帮我往课程表里面插入一条数据,是张三选的化学课程,课程时长120分钟
一下子集插入成功了:
同样的方法插入 3 条数据,现在只需要用自然语言来进行多表联查。
帮我查一下张三一共修了多少课程,一共会耗时多长时间?
可以看到 Cursor 自动写好联查 SQL,并统计好结果直接给我了。
同样不再话下,在 Cursor 中操作数据库变得如此简单。
说实话,这还只是 MCP 案例中的冰山一角,目前已经有好几千的 MCP Server 已经被开发出来,而且很多还在路上。
速度之快,不少人已经玩疯了,大模型搭载 MCP,越来越多好玩的智能体也随之出现。
很多应用也支持接入 MCP,比如 GitHub、高德、百度地图、apifox 等等。
大模型是工具,当工具本身能调用工具,事情就会变得越来越有意思了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。