LangGraph 实战:用 Python 打造有状态智能体

LangGraph 是一个专为构建有状态多节点执行流程AI 智能体系统设计的 Python 框架,它将状态机(State Machine)与图结构(Graph)相结合,使得开发者能够直观地用"节点+边"来描述执行逻辑和状态转移。

本文首先概述 LangGraph 的核心特点及设计理念,然后以"智能客服"场景为例,演示其基本用法和典型代码。

摘要

  • 状态驱动与有向图:LangGraph 通过 State(通常用 TypedDict 定义)贯穿整个执行流程,所有节点读取并更新状态局部;有向图(Graph)则定义了节点之间的控制流 ([LangChain AI][1])。
  • 节点与边:每个 Node 表示一个执行单元(如 LLM 调用、工具函数、决策逻辑),Edge 则可携带条件实现分支或循环,使流程更灵活可控 ([DEV Community][2])。
  • 可循环的工作流:区别于传统的 DAG(有向无环图),LangGraph 支持循环结构(cycles),更适合实现多轮决策与重试机制 ([Medium][3])。
  • 与 LangChain 深度集成:所有 LangChain 的 Runnable(例如 ChainTool、LLM 模型)都可直接作为节点使用,复用生态组件,增强扩展性 ([LangChain AI][1])。
  • 持久化与可视化:可接入 LangSmith 进行调用跟踪与日志记录,也可通过 graph.get_graph().draw() 利用 NetworkX 和 matplotlib 输出流程图,便于调试与监控 ([LangChain][4])。

一、为何需要 LangGraph?

  1. 复杂流程可视化:对话、任务执行、工具调用等往往需要多步交互和条件判断,传统端到端调用缺乏透明度和可控性;LangGraph 用图结构清晰呈现每一步逻辑 ([Medium][5])。
  2. 有状态管理:在多轮对话或长流程中,维护上下文与中间结果至关重要;LangGraph 将所有上下文统一存放在 State,节点只需专注局部更新,简化状态传递 ([LangChain AI][1])。
  3. 支持循环与分支:企业级智能体常常需要重试、分支判断或任务迭代,LangGraph 原生支持带条件的循环边(cycles)和分支边(conditional edges),实现更强的流程控制 ([Medium][3])。
  4. 生态复用:构建在 LangChain 之上,可复用其丰富的模型、检索、工具等组件,更快上手并保持一致的开发体验 ([LangChain AI][1])。

二、核心概念

概念说明
State全局状态,由 TypedDict 定义,包含历史消息、中间结果等;每个节点接收并返回部分状态更新。
Node执行单元,可以是调用 LLM、执行函数、判断逻辑等;输入当前 State,输出新的状态片段。
Edge状态转移路径,可添加条件函数,实现 if/else 分支或循环控制。
Graph有向图结构,将多个节点和边连接成完整工作流,编译后产生可执行 graph.invoke(state) 方法。

工作原理LangGraph 会根据图的拓扑与边的判断函数,自动执行对应节点,并将各节点的状态更新按定义合并到全局 State 中,直至到达指定的终点(Finish Point) ([DEV Community][2])。


三、示例:智能客服 Agent

下面以"智能客服"为例,展示如何用 LangGraph 构建一个能够判断是否调用外部"工具"并返回结果的简单对话流程。

3.1 环境依赖

pip install langchain_core langgraph dotenv langchain langchain_community openai langchain-openai

.env 文件中:

OPENAI_API_BASE=https://api.deepseek.com/v1
OPENAI_API_KEY=sk-xxxxxx

LANGSMITH_TRACING=true
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY="lsv2_pt_xxxxx"
LANGSMITH_PROJECT="pr-gripping-yak-45"

3.2 定义状态

from typing import TypedDict, List
from langchain_core.messages import BaseMessage

#%% 3. 定义对话状态结构
class AgentState(TypedDict):
    messages: List[BaseMessage] # 对话历史
    agent_outcome: str # 下一步决策:tool 或 final
    tool_response: str # 工具调用结果

3.3 定义节点

#%% 4. 初始化大模型
llm = ChatOpenAI(model_name="deepseek-chat", verbose=True)

#%% 5. 节点函数定义
defagent_decision_node(state: AgentState) -> dict:
    last_message = state["messages"][-1].content
    prompt = ChatPromptTemplate.from_template(
        "请判断用户的意图:\n"
        "用户输入:{input}\n\n"
        "如果需要调用工具,请回答 tool;否则回答 final。"
    )
    decision = llm.invoke(prompt.format_messages(input=last_message)).content.strip().lower()
    print(f"\n[Agent Decision] outcome = {decision}")
    return {"agent_outcome": decision if decision in ("tool", "final") else"final"}

deftool_node(_: AgentState) -> dict:
    return {"tool_response": "明天晴,气温25°C,适合出行。"}

deffinal_node(state: AgentState) -> dict:
    # 获取工具的响应,或者默认消息
    reply = state.get("tool_response", "很高兴为您服务!")
    
    # 获取当前时间戳,作为元数据
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # 可以添加额外的元数据,例如,用户的原始输入
    user_input = state["messages"][-1].content
    
    # 打印出回复信息及其附加内容
    print(f"回复: {reply}, 时间: {timestamp}, 用户输入: {user_input}")
    
    # 返回包含原始消息和回复的消息记录
    return {
        "messages": state["messages"] + [AIMessage(content=reply)],
        "metadata": {
            "timestamp": timestamp,
            "user_input": user_input,
            "reply_length": len(reply),
        }
    }

3.4 构建并编译图

#%% 6. 构建 LangGraph 工作流
def build_graph():
    workflow = StateGraph(AgentState)
    workflow.add_node("agent", agent_decision_node)
    workflow.add_node("tool", tool_node)
    workflow.add_node("final", final_node)
    workflow.set_entry_point("agent")
    workflow.set_finish_point("final")
    workflow.add_conditional_edges("agent", lambda st: st["agent_outcome"], {"tool": "tool", "final": "final"})
    workflow.add_edge("tool", "final")
    return workflow.compile()

# 编译一次,供全局使用
graph = build_graph()

3.5 调用测试

#%% 7. 运行测试
def test_run():
    init_state = {"messages": [HumanMessage(content="请问明天天气如何?")]}
    result = graph.invoke(init_state)
    print("\n对话记录:")
    for msg in result["messages"]:
        print(f"[{msg.type}]: {msg.content}")

通过修改判断逻辑、替换工具节点为真实 API、或在 State 中增加更多字段(如意图、对话轮次等),即可快速扩展为更复杂的客服或业务流程 ([LangChain AI][1], [Medium][5])。


四、可视化与调试

LangGraph 支持将工作流导出为 NetworkX 图结构,便于通过 matplotlib 进行流程图可视化,同时也支持生成 MermaidPNG 格式的图示。此外,LangGraph 可无缝集成 LangSmith,实现对智能体执行过程的可视化调试与追踪。

4.1 流程图生成

#%% 8. 使用 Mermaid 可视化工作流
def visualize_workflow_with_mermaid(graph):
    mermaid_code = graph.get_graph().draw_mermaid()  # 获取 Mermaid 格式代码
    
    # 通过 IPython 显示 Mermaid 图
    display(Markdown(f"```mermaid\n{mermaid_code}\n```"))

输出结果:

__start__agenttoolfinal__end__

4.2 LangSmith 集成调试

通过 LangSmith 记录执行过程:

#%% 9. LangSmith 追踪(可选)
defrun_with_langsmith(input_state):
    if"LANGSMITH_API_KEY"in os.environ:
    
        @traceable
        deftraced_fn(state):
            return graph.invoke(state)

        result = traced_fn(input_state)
        print("\n[Traced] 对话记录:")
        for msg in result["messages"]:
            print(f"[{msg.type}]: {msg.content}")
    else:
        print("\n跳过 LangSmith 集成:未设置 LANGSMITH_API_KEY")
        
#%% 10. 主入口
if __name__ == "__main__":
    visualize_workflow_with_mermaid(graph)
    # test_run()
    run_with_langsmith({"messages": [HumanMessage(content="北京天气怎么样?")]})

LangSmith 控制台中可查看:

  1. 各节点执行耗时
  2. 状态变更历史
  3. 条件边判断结果

五、拓展与实践建议

  1. 高级决策:将 agent_decision_node 替换成 OpenAI Functions,实现更丰富的意图识别与工具选择 ([LinkedIn][6])。
  2. 多工具调用:在 State 中维护工具队列,实现同时调用多个服务(搜索、计算、翻译等)。
  3. 持久化存储:集成数据库或持久化层(如 Redis、Postgres),保存长期会话或任务进度。
  4. 监控与回溯:接入 LangSmith,开启 Trace 跟踪,实时查看节点执行时间及状态变更 ([LangChain][4])。
  5. 多 Agent 协作:构建多角色智能体(如 Planner、Executor、Evaluator),通过图的形式串联,形成协作式智能系统 ([arXiv][7])。

六、小结

本文通过智能客服示例,演示了 LangGraph 的基本使用流程:

  • 定义全局 State,存放上下文与中间结果
  • 编写节点(Node)实现决策、工具调用、回复生成
  • 用有向图(Graph)组织节点与条件边
  • 编译并调用流程,结合 NetworkX 可视化

LangGraph 使得复杂、有状态的 AI 智能体开发变得模块化、可视化且易于维护,是构建企业级对话系统和多智能体工作流的利器。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值