聊聊多Agent框架——qwen-agent的实践示例

Qwen-Agent[1]是一个开发框架。开发者可基于本框架开发Agent应用,充分利用基于通义千问模型(Qwen)的指令遵循、工具使用、规划、记忆能力。本项目也提供了浏览器助手、代码解释器、自定义助手等示例应用。

之前试用了agent-scope,没qwen-agent好用,而且,其中的问题很多,尤其是agent-scope与本地LLM都连接不上,connection报错。

基于本地部署的qwen2-7b-instruct模型,跑两个agent;其中前一个agent的输出,作为后一个agent的系统prompt的一部分。

from qwen_agent.agents import Assistant      # LLM配置   llm_cfg = {       # 使用与 OpenAI API 兼容的模型服务,例如 vLLM 或 Ollama:       'model': 'qwen2_7b_instruct',       'model_server': 'http://127.0.0.1:6006/v1',  # base_url,也称为 api_base       'api_key': 'EMPTY',          # (可选) LLM 的超参数:       'generate_cfg': {           'top_p': 0.8       }   }      ###   ### 第一个 agent 提示词   ###    first_instruction = '''   你是一个综合的工具,用于从如下方面处理用户的输入内容:       1. 识别真实意图       2. 提取人物及其关系       3. 以如上两点为维度,拆分子内容块       4. 对整个输入做情感分析      用户输入如下:       $input$      按如下格式要求回复:       意图:[用户的意图想法]       人物关系:[人物1]-[关系]、[人物2]-[关系]       子内容1:[拆分后的第一个子内容]       .....       子内容n:[拆分后的第n个子内容]       情感分析:[情感状态]   '''      ###    ### 第二个 agent 提示词   ###    second_instruction = '''   围绕如下已知的前提条件做问询,从而了解患者的实际情况及实际问题,已知前提条件如下:   $input$      按如下要求回复:   1. 以问询的方式,与用户进行沟通   2. 必须紧扣已知前提条件进行回复      '''      while True:       query = input('用户请求: ')       first_msg = []       first_msg.append({'role': 'user', 'content': query})       first_query = first_instruction.replace('$input$', query)              ###       ### 集合了NLP任务的AI       ### 1. 文本摘要       ### 2. 关系抽取       ### 3. 实体识别       ### 4. 情感分析       ### 5. 。。。       first_agent = Assistant(llm = llm_cfg,                       system_message = first_query,                       name = 'Assistant',                       description = '意图识别')              *_, first_response = first_agent.run(first_msg)       print(first_response)              print("\n\n-------------------------------------- agent分割线 ---------------------------------------------\n")              ###       ### 第二个agent       ###        messages = []       second_query = second_instruction.replace('$input$', first_response[0]['content'])       messages.append({'role': 'user', 'content': second_query})       print(second_query)              second_agent = Assistant(llm = llm_cfg,                       system_message = second_query,                       name = 'Assistant',                       description = '响应回复')              *_, second_response = first_agent.run(messages)       print(second_response)       messages.extend(second_response)       print("\n\n")      

在这个示例里面,我的初衷是拆分多个agent,每个agent做不同的事情,然后衔接起来;通过细化agent最终完成目标业务。

整个一趟下来,我个人最大的感受,还是prompt的魔力——释放LLM的NLP能力;拆分agent,就是让每个agent实现不同的NLP任务,然后衔接起来,最终完成业务。

之前一直在找合适的agent框架,比较满意的是autogen,但是可惜对国产LLM的支持不到位。试用了一圈,虽然暂时qwen-agent在一些功能上(后面会讲到)还有欠缺,但可以自己做开发或是提feature给官方,还是不错的。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Qwen Agent Configuration and Usage In the context of IT, configuring and using a Qwen agent involves several key aspects including obtaining an API Key, setting up environment variables or configurations to interact with the service, and implementing code that utilizes this API for various tasks. To obtain an API Key necessary for accessing services like Qwen, one must follow specific procedures outlined by providers such as AliCloud. This process typically includes registering on the platform where these APIs are hosted, navigating through documentation provided specifically for acquiring credentials required for authentication when making requests against endpoints offered by said platforms[^2]. Once acquired, integrating this API into applications requires storing it securely within environments used during development phases while ensuring proper handling mechanisms exist so sensitive information does not get exposed unintentionally. For Python-based projects, common practices involve placing keys inside `.env` files which can then be loaded at runtime via libraries designed explicitly for managing secrets outside version control systems. Implementing functionality leveraging Qwen's capabilities often entails utilizing HTTP client packages available across different programming languages—such as `requests` in Python—to send POST requests containing JSON payloads formatted according to specifications documented by the provider. Below is an example demonstrating how one might structure such interactions programmatically: ```python import os import json from dotenv import load_dotenv load_dotenv() api_key = os.getenv('QWEN_API_KEY') url = "https://dashscope.aliyun.com/v1/api/qwen" headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data = {"prompt": "What is TensorRT-LLM?"} response = requests.post(url=url, headers=headers, data=json.dumps(data)) if response.status_code == 200: result = response.json() else: raise Exception(f"Request failed with status code {response.status_code}") ``` This snippet illustrates sending a query about TensorRT-LLM to Qwen’s endpoint after authenticating using previously obtained credentials stored safely within environmental settings. The request sends along any parameters expected based upon what operations intend to perform alongside receiving responses back from servers hosting targeted resources. --related questions-- 1. How do I register for access to advanced features offered by Qwen? 2. What security measures should developers take when working with API Keys? 3. Can you provide more examples of interacting with Qwen beyond simple text queries? 4. Are there official SDKs supporting multiple programming languages for easier integration? 5. Is it possible to deploy models trained locally onto cloud infrastructure supported by Qwen?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值