AI助手要觉醒?揭秘RAG、Agent、MCP三大超能力如何让它无所不能!

你有没有想过,为什么现在的AI助手突然变得这么“聪明”?

它能三秒内查清股市数据、自动安排你的差旅行程,甚至帮你写专业报告。

这背后,其实是AI界悄悄解锁了三大超能力——

超级记忆、自主思考、万物互联。今天我们就用人话拆解这些黑科技!

超能力一:超级记忆(RAG)

一句话解释:AI终于学会“查资料再答题”了!

想象你让AI写一份《2024年新能源汽车报告》,以前的AI可能会瞎编数据,但现在——

1️⃣ 翻资料:它秒速搜索全球数据库、行业白皮书

2️⃣ 筛重点:从海量信息中抓取最新电池技术、政策法规

3️⃣ 说人话:用大白话给你总结关键趋势

这就好比学霸写论文,绝不空口说白话,而是先泡图书馆查三天资料。

你的收获:从此AI回答自带“参考文献”,编造数据的毛病少了一大半!

超能力二:自主思考(Agent)

一句话解释:AI从“工具人”进化成“智能管家”!

比如你随口说:“下个月带爸妈去云南玩一周”,现在的AI会——

🧠 拆任务:自动分解成订机票、选酒店、排景点路线

🔍 做决策:避开雨季路线,推荐无障碍设施酒店

🛠️ 搞执行:直接给你三个方案选,还能一键下单

这就像雇了个年薪百万的私人助理,你说目标,他给你全套解决方案。

你的惊喜:AI终于不是“你推一步它动一步”,而是真能扛事儿了!

超能力三:万物互联(MCP)

一句话解释:AI成了“万能插座”,什么工具都能插!

以前AI想查天气得单独接气象局接口,查航班又得连航空公司系统…

现在有了MCP协议:

🔌 统一接口:银行系统、办公软件、智能家居全都能对接

⚡ 秒速响应:你说“帮我交水电费”,它直接调支付宝完成

🌐 无限扩展:未来连你家的智能窗帘、汽车导航都能指挥

就像给你的AI配了个“瑞士军刀工具箱”,需要什么功能随时调用。

img

当三大超能力合体…

现在的顶级AI系统,已经能做到:

  • 早上8点自动抓取新闻+行业数据生成简报(RAG发力)上午10点
  • 分析你的日程,把会议改到不堵车的时间段(Agent决策)下午3点
  • 登录公司系统导出报表,做成可视化图表(MCP连接)

这还不是最牛的!医疗AI能边查病例库边开药方,教育AI能根据学生错题自动出试卷…

你该关心什么?

✅ 防忽悠指南:

遇到张口就来的AI?它可能没装“超级记忆”(RAG)

只会复读机式回复?说明缺了“自主思考”(Agent)

连天气都查不了?肯定没打通“万物互联”(MCP)

🚀 未来已来:

下次遇到真·智能的AI,不妨试试这些高阶指令:

“用最近三年数据,预测杭州房价走势”(考验RAG)

“设计一份减脂+增肌的智能食谱,同步到我的健身App”(测试Agent+MCP)

写在最后:

AI的这波进化,像极了人类从“背字典”到“用工具”再到“动脑子”的过程。

或许有一天,你的AI助手会比你更清楚——

什么时候该查资料、什么时候要自己做主、什么时候调用哪个工具。

而我们要做的,就是用好这些“觉醒”的AI超能力,让自己活得更像个“指挥官”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值