使用ChatGPT高质量撰写文献综述全攻略实操指南,五步轻松搞定!

在学术研究中,文献综述很重要,但完成的过程又很费时费力,还经常没有头绪。撰写文献综述的过程需要研究者具备全面的文献收集能力、强大的分析能力以及结构化写作技巧。七哥会通过这篇文章从确定主题、文献收集、内容提炼与整合、框架搭建以及修订与完善五个方面,逐步阐述如何借助ChatGPT来撰写高质量文献综述。

我在每个关键步骤都会附上详细专业的提示词指令,并结合学术写作中的具体操作场景,确保每一条提示词指令都能够更加准确地引导AI大模型生成高质量的论文综述。

一、确定研究主题

在选择研究主题时,应关注主题的前沿性和现实意义,确保其具有学术和实践上的双重价值。避免选题过于宽泛或过窄,确保有足够的文献支撑。同时,选题应具备创新性,能够填补现有研究中的空白,并具备清晰的研究焦点和可行的研究路径。

通过借助ChatGPT生成与特定领域相关的研究主题和关键词,让综述文章有明确的研究方向和焦点。通过探讨当前趋势、未解问题和研究空白,精准确定研究主题。

提示词指令:

1、“结合当前[研究领域]的国际趋势和前沿技术,提出3-5个潜在的研究主题,并简述每个主题的创新点及学术价值。”

2、“为[研究领域]的综述设计一个研究框架,包含核心概念、研究对象、理论基础,并分析这些要素对研究主题的限定。”

3、“基于[研究领域]的最新发展,探索现有研究中的理论缺口或争议问题,生成2-3个可供深入探讨的子方向,并提供文献支持。”

4、“分析[研究领域]内的多学科交叉点,提出一个能结合[相关领域]的新兴研究主题,阐述其可能带来的学术贡献及实际应用前景。”

5、“针对[研究领域]中的一个经典理论,生成一个与当前社会或技术发展相结合的新研究问题,并提出可供假设检验的路径。”

6、“为[研究主题]设计一个理论模型,阐述模型中的主要变量、因果关系及其适用的研究方法。”

7、“探讨[研究主题]在国际研究与本土研究中的差异性,生成一个能够填补文化或区域差异的研究主题。”

二、全面系统的文献收集

文献的收集要遵循系统性和全面性的原则,要涵盖领域内的经典文献和最新研究。文献的来源必须权威可靠,尤其是高影响力的期刊文章和学术专著。同时,应避免单一视角,确保所收集的文献代表研究领域内的多元观点,以便进行全面的学术综述。

通过高级学术版GPTs学术应用可以初步生成核心文献列表,并通过系统性文献回顾的方式确保综述的权威性,需要注意的是AI生成的文献要进行人工验证真实性。

提示词指令:

1、“基于[时间范围]内的Scopus或Web of Science数据库,生成与[研究主题]相关的5篇高引用率文献,并概述每篇文献的研究问题、方法和主要结论。”

2、“查找与[研究主题]有关的综述文章,提供其研究框架和主流观点,并分析该综述的引用频次和学术影响力。”

3、“生成一份[研究主题]的系统性文献综述框架,列出文献收集的标准(如时间、数据库、关键词),并分析筛选结果的质量和一致性。”

4、“根据[研究领域]的经典理论,列出其发展脉络中的关键文献,生成一份包含主要理论演化的时间线,并总结这些理论在实证研究中的应用。”

5、“提供[研究主题]相关的多种学术争议或相对立的观点,生成一份多元化的文献清单,分析各自的理论基础、数据来源和结论差异。”

6、“针对[研究主题],生成一份学术会议论文列表,并分析这些论文对研究领域的最新贡献,评估其未来的应用潜力。”

7、“列出关于[研究主题]的高度引用文献,并提供每篇文献的引用频次、影响因子和所属期刊的学术声誉分析。”

三、核心内容的提炼与整合

在提炼和整合文献内容时,要能够从不同的研究中抓住核心理论贡献和关键数据。注意各个研究之间的联系和差异,尤其是方法论上的异同与理论框架的差异。应批判性地分析文献,确保能够整合不同观点并进行深入讨论,而不是简单地罗列研究结果。

利用ChatGPT辅助学术人员提炼出文献中的核心观点,并整合不同研究的结论和数据,从而构建一个多维度且相互关联的综述,揭示研究领域的复杂性和学术贡献。

提示词指令:

1、“从[研究主题]的核心文献中提炼出主要理论观点及其相互关联性,生成一个涵盖这些观点的理论框架,突出各自的创新性贡献。”

2、“结合多个文献的定量分析数据,生成一份[研究主题]的关键统计发现列表,详细说明这些数据的来源、分析方法及其局限性。”

3、“归纳不同研究中使用的实验或调查方法,生成一个比较表,分析各方法的优缺点,并说明它们如何影响研究结论的有效性和可靠性。”

4、“根据[研究主题]的多篇文献,提炼出不同学者的核心结论并生成一份整合报告,比较这些结论的异同,并为未来研究提出新的假设和研究方向。”

5、“将[研究主题]中不同学派的研究成果整合,生成一个综合模型,展示这些研究成果在理论层面和实践应用中的贡献及其相互补充的关系。”

6、“生成一份基于文献回顾的图表或图形模型,展示[研究主题]中主要变量之间的关系及其随时间的演变,并分析未来趋势。”

7、“为[研究主题]撰写一段基于不同文献的综合分析段落,要求突出不同理论间的争议及其背后的数据支持。”

四、构建结构严谨的框架

文章框架应遵循学术写作的规范,包括引言、文献综述、讨论和结论等部分。每一部分应具备明确的功能和逻辑顺序,确保各章节之间过渡自然,结构紧密。应特别注意文献综述部分的层次性,确保按照时间、主题或方法等方式有效组织材料,使读者能够清晰地跟随论证思路。

通过ChatGPT的辅助,可以设计综述文章的结构,包括大纲、章节设计、逻辑框架等,确保文章结构合理,逻辑清晰,符合学术规范。

提示词指令

1、“根据[研究主题]生成一个详细的论文大纲,包含引言、文献综述、方法论分析、结果讨论和结论等部分,并简述每部分的核心内容。”

2、“为[研究主题]撰写一份逻辑严密的文献综述章节大纲,详细说明每一部分需要涵盖的关键概念、研究成果及其逻辑联系。”

3、“设计一个针对[研究主题]的文章结构,明确各章节的功能及其与文章整体论证的关系,确保文章逻辑连贯、论证有力。”

4、“生成一份基于[研究主题]的详细章节结构,包含各章节的标题、子标题及各部分的研究问题、假设和理论支持。”

5、“撰写一份关于[研究主题]的结论提纲,归纳文章中的主要发现,并在结论部分提出对未来研究方向的具体建议。”

6、“为[研究主题]的综述文章设计引言段落,简述该领域的研究背景、重要性和当前面临的挑战,并在段末提出本文的研究目标和问题。”

7、“生成一段过渡段落,用以连接[研究主题]的不同章节,确保章节间的逻辑流畅性。”

五、文献综述的优化与完善

在对文稿进行修订时,要特别注重文章的逻辑连贯性和语言准确性,确保文章符合学术写作的严谨要求。注意检查文献引用的准确性和一致性,确保引用格式正确且符合学术规范。同时,确保论证充分展开,特别是对于复杂的学术争议,应提供平衡且客观的分析,避免片面性。

ChatGPT的正确使用,可以帮助学者朋友审阅和修订文章的逻辑、内容和语言表达,确保分析深度、逻辑连贯性和学术规范性,提升论文的整体质量。

提示词指令:

1、“针对[研究主题]的综述文章,提供关于如何进一步展开或深化分析的建议,尤其在文献间存在争议的部分。”

2、“审查文章中的学术用词,提供建议以使语言更加精炼且符合学术规范,并确保在论证过程中避免含糊的表达。”

3、“针对文章中的论证逻辑,提出改进建议,以确保论点、论据和数据支持的衔接更加严密,避免逻辑漏洞。”

4、“为文章中的图表或数据展示部分提供优化建议,确保这些数据与文本中的论点紧密相关,且在呈现方式上简洁明了。”

5、“检查综述文章对不同观点的平衡性,提供如何更好地展示相互冲突的理论和数据,并提出如何有效地总结这些争议。”

6、“生成一份编辑建议报告,重点分析文章的结构合理性、论证力度、语言表达及数据呈现的有效性,并提供具体修改方案。”

7、“审阅文章的结论段落,建议如何强化对研究问题的回答,并提出对政策、实践或未来研究的实际应用建议。”

以上这些专业的学术提示词指令是我自己写作中使用过,也反复打磨调整处理后,能够更有效地生成更具专业性和学术深度的论文文献综述,确保咱们的论文综述既具逻辑性又符合学术标准。

还是要提醒大家,涉及文献以及综述的内容,4.0或者4o模型的数据库是受限的,并不能有效真实的搜集想要的文献以及生成靠谱的综述内容,只有高级学术版GPTs学术应用是可以的,因为这些应用都是接了专有的文献数据库,可以有效搜索文献并综述。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值