如何增强 Dify 的知识库检索能力?

Dify 在知识库检索方面的不足,但是 fastGPT 的一些功能以及大模型配置都比较麻烦,而且从功能的多样性上来说,Dify 还是比较有优势的。所以三金和小伙伴们都在想:有没有什么方法可以增强 Dify 的知识库检索功能呢?

首先我们知道,在 Dify 的知识库创建时,第二步「文本分段和清洗」页面会有三个配置项,它们分别是:

  • 分段设置

  • 索引方式

  • 检索设置

其中对于 分段设置来说,如果不了解,可以默认选择「自动分段与清洗」

而对于 检索方式来说我们则可以选择「高质量检索」和「采用 Q&A 分段模式」

  • 调用系统默认的嵌入接口进行处理,以在用户查询时提供更高的准确度

  • Q&A 分段模式功能,是采用「Q to Q」(问题匹配问题)匹配工作,在文档经过分段后,经过总结为每一个分段生成 Q&A 匹配对,当用户提问时,系统会找出与之最相似的问题,然后返回对应的分段作为答案。这种方式 更加精确 ,因为它直接针对用户问题进行匹配,可以更准确地获取用户真正需要的信息。(理所当然的,开启后将会消耗额外的 token)

问题文本是具有完整语法结构的自然语言,而不是文档检索任务中的一些关键字,所以 Q to Q (问题匹配问题)的模式会令语意和匹配更加清晰,并同时满足一些高频和高相似度问题的提问场景。

为了测试两个产品的知识库检索功能,三金其实都使用过 Q&A 分段的形式,不过这个分段模式会比较耗费时间,因为它首先会对文档进行分段,然后通过大模型总结再为每个分段生成 Q&A 匹配对。同一个文档,二者都花费了20分钟到半个小时左右的时间。

再接下来就是检索设置了,不同的索引方式提供了不同的检索设置,在高质量索引方式下,Dify 提供了三种方案:

  • 向量检索 ,通过生成查询嵌入并查询与其向量表示最相似的文本分段。

  • 全文检索 ,索引文档中的所有词汇,从而允许用户查询任意词汇,并返回包含这些词汇的文本片段。

  • 混合检索 ,同时执行全文检索和向量检索,并附加重排序步骤,从两类查询结果中选择匹配用户问题的最佳结果,需配置 Rerank 模型 API。

Dify 官方是推荐混合检索模式,三金尝试了一下,确实还可以。尤其在 Rerank 模型之后,系统会在混合检索后对已召回的文档结果再一次进行语义重排序,优化排序结果。

综上,在不涉及其他优化手段的情况下,想要增强 Dify 知识库的检索能力,需要:

  • 在分段设置中选择:自动分段与清洗

  • 在索引方式中选择:高质量检索模式 + Q&A 分段模式(这个耗时会比较久)

  • 在检索设置中,选择混合检索模式,并开启 Rerank 模型

在我们之前的配置中,LLM 选择的是 OpenAI 的 gpt4o-mini 模型,Embedding 模型为 text-embedding-3-large 模型,并没有 Rerank 模型。幸好 Dify 支持的大模型种类繁多,我们可以单独集成一个 Rerank 模型进来。

Jina AI

我们可以 接入 Jina AI 来增强 Dify 知识库的检索能力

在 Jina AI 的官网中对 Jina 的解释就一句话:

Your Search Foundation Supercharged

解释过来就是:你的搜索能力被极大地提升了。

而我们在 Dify 中 使用 Jina AI 的向量检索和 Rerank 重排也确实可以极大地提升知识库检索能力 。接下来三金就给大家演示一下:

  • 如何申请 Jina AI 的 API Key

  • 接入并使用 Jina AI 的 Embedding 模型以及 Rerank 模型

申请 API Key

Jina AI 的 API Key 申请非常简单,不需要注册登录,只需要访问他们的官方就会 提供将近百万的免费 tokens 供你使用

官网地址:https://jina.ai/

在 Dify 中使用

Jina 还有一点好处就是 国内可以直接使用 !所以在 Dify 的模型配置对话框中,我们只需要填入 API key 就可以了。

Jina 支持的 Rerank 模型和 Embedding 模型也有很多:
在这里插入图片描述

我们可以将系统默认的 Embedding 模型和 Rerank 模型换成 Jina 中的:

那么在知识库中我们就可以使用 Jina 的向量模型和 Rerank 模型开始进行创建了。

知识库设置

我们之前已经创建过一个 K8s 相关的知识库了,这个知识库中的向量模型使用的是 OpenAI 的 text-embedding-3-large,并且为了方便测试,我又添加了一个微软用来测试知识库的 Word 文件:

在这里准备了三个问题:

  • Use Windows Hello to sign in

  • Charge your Surface Pro 4

  • Get to know Windows 10

然后让我们来看一下在这个知识库中的回答情况如何:

在这里插入图片描述

看起来还可以,每个回答都可以看到对应的引用。

接下来我们将 Jina 接入到知识库中:

  • 创建一个新的知识库,在第一步中上传相同的测试文件

  • 在第二步中设置 Embedding 模型为 jina-embeddings-v2-base-zh,以及设置 Rerank 模型为 jina-reranker-v2-base-multilingual

  • 为了节省测试时间,就不使用 Q&A 方式进行分段了,我们直接开始创建

创建好之后我们提问相同的问题,对比一下结果:

  • Use Windows Hello to sign in

  • Charge your Surface Pro 4

  • Get to know Windows 10

在这里插入图片描述

在这里插入图片描述

看起大差不差,但细节决定成败,加入了 Rerank 之后的回答,每一个问题都比之前多了一些内容,而这只是在只有 8.9k 大小的文件上体现出来的,如果是体积更大的文件,我相信 检索效果肯定会更加明显

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值