Nature Medicine|BiomedGPT:开创性生物医学视语言模型,精准赋能多样医疗任务
在《Nature Medicine》期刊上发表的文章《A generalist vision–language foundation model for diverse biomedical tasks》中描述了一种功能强大且适应性广泛的人工智能模型,能够处理并整合视觉和语言两种不同类型的数据。在生物医学领域,视觉数据通常包括医学影像,如X光片、CT、MRI等,而语言数据则涵盖了各种医疗文本、病例描述、电子病历等。该模型的通用性意味着它不仅限于某一种特定任务,而是能够灵活应用于多种生物医学任务,如医学影像诊断、临床报告生成、药物发现、医疗文本分析等。在模型开发阶段,基于大量的视觉和语言信息进行预训练,使得模型具备了处理复杂、多样化任务的能力。这一通用的视觉-语言模型为生物医学领域的各种任务提供了高效、灵活的智能解决方案。
引言
文章指出,传统的生物医学AI模型通常是为特定任务或模态设计的,这限制了它们在实际应用中的灵活性,尤其是在需要整合多种数据类型的情况下。这些模型的任务特定性和数据整合困难,使得它们难以为精准医学和以患者为中心的护理提供全面支持。相较之下,通用型AI模型具备多任务处理能力,能够通过统一的数据序列化处理不同模态和任务。基于这一潜力,文章提出了BiomedGPT模型,它是一个开源且轻量级的视觉-语言基础模型,能够整合多种生物医学模态和任务,展现出广泛的应用前景。
02.BiomedGPT架构
BiomedGPT是一个专为生物医学领域设计的基于Transformer的架构,它建立在通用数据统一模型的成功基础上。以下是该模型的架构及其各部分的详细功能介绍:
模型架构
BiomedGPT采用了模态无关(modality-agnostic)、任务无关(task-agnostic)和统一的处理方式,能够处理图像和文本数据,并支持扩展到其他生物医学数据类型,如视频和时间序列数据。
组成部分及功能
- 模态无关性:
-
BiomedGPT能够处理不同模态的数据,如图像和文本,无需为每种模态设计特定的模型架构。
-
通过统一的预处理和编码方式,将不同模态的数据转换为模型可理解的格式。
- 任务无关性:
-
模型支持多种生物医学任务,包括视觉问答(VQA)、医学影像分类、报告生成和摘要等。
-
通过统一的指令格式,模型可以灵活地适应不同的任务需求,而无需对模型结构进行重大修改。
- Transformer架构:
-
BiomedGPT的核心是Transformer架构,它包含编码器(Encoder)和解码器(Decoder)。
-
编码器用于处理输入数据(图像和/或文本),将其转换为高维特征表示。
-
解码器则基于这些特征表示生成输出,如文本回答、报告或摘要。
- 多模态融合:
-
模型能够融合来自不同模态的信息,如图像中的视觉特征和文本中的语义信息。
-
通过注意力机制(Attention Mechanism),模型可以学习不同模态之间的关联,并据此生成更准确的输出。
- 统一预训练和微调:
-
BiomedGPT采用统一预训练方式,利用大规模生物医学数据集进行训练,以学习通用的生物医学知识和表示。
-
在实际应用中,可以通过微调(Fine-tuning)方式使模型适应特定的生物医学任务或数据集。
- 指令调优与零样本学习:
-
BiomedGPT支持指令调优(Instruction Tuning),通过引入自然语言指令来指导模型的行为,从而增强其理解和生成能力。
-
模型还具备零样本学习(Zero-shot Learning)能力,能够在不经过进一步训练的情况下回答新的生物医学问题。
- 可扩展性与灵活性:
-
BiomedGPT的设计使其具有高度的可扩展性和灵活性。
-
可以通过添加新的模块或组件来扩展模型的功能,如引入三维图像编码器以处理三维医学影像数据。
BiomedGPT模型架构
03.研究结果
- 医学视觉问答(VQA)
-
在SLAKE数据集上,BiomedGPT取得了86.1%的整体准确率,超越了之前的最高水平(SOTA)85.4%,该记录由BiomedCLIP保持。
-
在Peir Gross数据集上,BiomedGPT在ROUGE-L和METEOR评估指标上分别取得了改进,ROUGE-L提高了8.1个百分点,METEOR提高了0.5个点,获得了89.8的高分。
研究结果示意图1
- 医学图像描述(Image Captioning)
- 在多种医学图像描述任务中,BiomedGPT表现出色。例如,在MIMIC-CXR数据集上,BiomedGPT的METEOR得分为15.9%,超越了之前的领先水平。
研究结果示意图2
- 医学图像分类
- BiomedGPT在MedMNIST-Raw数据集上的7个分类任务中,有5个取得了最佳准确率。特别是在dermoscopy数据集上,BiomedGPT的表现超过了两个基线模型14%以上。
研究结果示意图3
- 疾病诊断
- BiomedGPT在零样本(zero-shot)设置下对多种疾病进行了诊断,结果展示了与Med-PaLM M(一个参数量更大的模型)相当的性能。
- 在院死亡率预测
- 使用MIMIC-III数据库的入院记录评估BiomedGPT在预测在院死亡率方面的表现。三个版本的BiomedGPT(小、中、大)均超越了BioGPT和LLaVA-Med的表现。
- 医学报告生成和摘要
-
在MIMIC-CXR数据集上,BiomedGPT生成的放射学报告质量得到了医生的认可,尽管存在一些错误和遗漏,但其正确性和完整性得到了医生的较高评价。
-
在与专家编写的参考报告进行对比时,BiomedGPT的偏好得分(由医学专家在多项选择任务中给出)为48%,而参考报告的偏好得分为52%。统计结果显示,两者之间没有明显的偏好差异(Sign test,P > 0.05),表明BiomedGPT在医疗摘要的质量和安全性方面达到了可比较的性能水平。
研究结果示意图4
- 其他多任务实验结果
-
BiomedGPT在跨25个数据集进行微调后的结果显示了其出色的迁移学习能力。它使用预训练阶段学到的知识来专注于完成不同的下游任务。
-
与大型生物医学AI模型Med-PaLM M相比,即使BiomedGPT的参数量大大少于后者(BiomedGPT比Med-PaLM M小3088倍),它仍然在多个生物医学任务上展现了出色的表现。
综上所述,BiomedGPT模型的实验结果通过一系列精确的数据指标展示了其在多样化生物医学任务中的高效性能和通用性。这些数据指标包括准确率、F1分数、ROUGE-L、METEOR等,确保了结果的可靠性和准确性。
04.研究意义
- 开创性:
- BiomedGPT是首个开源且轻量级的视觉-语言基础模型,专为生物医学领域设计,具备执行多种生物医学任务的能力。它的出现填补了生物医学领域在通用型AI模型方面的空白。
- 广泛适用性:
- BiomedGPT经过跨学科数据的训练,并在广泛的任务上进行了评估,展示了其高度的适应性和通用性。它可以应用于各种下游任务,为生物医学研究和临床决策提供有力支持。
- 透明性与开放性:
- 与许多重量级且封闭的AI解决方案不同,BiomedGPT是完全透明和开源的。这意味着研究人员、从业者和患者都可以访问其源代码和模型,从而促进了生物医学领域的公平性和可解释性。
- 转移学习能力:
- BiomedGPT具备出色的转移学习能力,能够利用预训练知识来专门处理特定任务。通过微调,它可以在不同的生物医学数据集上实现高性能,展示了其在跨数据集和领域中的广泛适用性。
- 零样本学习能力:
- BiomedGPT还是一个零样本学习者,能够在没有进一步训练的情况下回答多模态医学问题。其性能与领先的AI系统相当,为生物医学领域的快速响应和决策提供了可能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。