LLM产生幻觉的原因以及缓解的方法

一、什么是大型语言模型的幻觉?

幻觉是指AI模型生成的文本虽然在语法上正确且看似合理,但并不基于给定的输入,甚至可能是事实错误的。

为什么LLMs会产生幻觉?

如前所述,语言模型可能会产生幻觉并生成包含虚构或错误回答的输出。这些错误展示了AI的局限性,强调了人类监督和与可靠来源交叉核对以进行验证的重要性。但指派人类来验证每个回答既不可行也无法扩展。我们将在稍后讨论幻觉缓解策略,但首先让我们看看LLMs为什么会产生幻觉:

  1. 训练数据不足。一个在训练过程中没有遇到多样化数据的模型,可能无法在输入和输出之间建立准确的关联,从而导致幻觉内容。

  2. 监督不足。没有适当的指导,模型可能会过度依赖其内部逻辑,导致看似幻觉的输出。

  3. 模型过拟合。对训练数据的过拟合可能导致模型生成与训练集相似但与新输入或不同输入不一致的输出。

  4. 知识截止。像ChatGPT这样的LLMs有知识截止日期,因此对该日期之后的信息一无所知。它们可能会在不知情的情况下用过时的信息回答你的问题,这些信息已不再相关。

二、LLM幻觉的类型

我们可以将这些幻觉类型分为三大类:

  1. 事实不准确。这种类型的幻觉发生在语言模型呈现的信息不真实或不正确,但被框架化为事实。这包括日期、事件、统计数据或可验证的错误陈述。它可能由于多种原因发生,包括对输入数据的误解、低质量数据和训练方法、依赖过时或错误的来源或不同背景信息的混合导致不准确的输出。

  2. 生成的引用或来源。这种情况发生在语言模型捏造引用或引文时。它可能生成一个陈述并错误地归因于一个真实的人,或者创建一个根本不存在的虚构来源。这是有问题的,因为它会导致错误信息、错误归因的陈述和混淆。

  3. 逻辑不一致。这包括生成内部不一致或逻辑上有缺陷的回应。在为用户查询生成回应后,LLM可能在进一步的回应中自相矛盾。当模型做出一系列陈述时,这些陈述合在一起是不连贯或相互矛盾的——这挑战了模型输出的可信度,并使依赖其一致性的用户感到困惑。

    在所有这些情况下,语言模型并非故意误导,而是由于其训练数据、数据质量、知识截止日期、糟糕的微调等各种原因展示了其自身的局限性。

三、LLM幻觉缓解策略:RAG、生成前策略、生成后策略

研究人员正在开发各种方法,以确保LLMs生成的回答准确。一些策略需要人类干预,如通过人类反馈的强化学习(RLHF);使用高质量数据来微调;使用RAG等等。

检索增强生成(RAG)

  • 自我RAG(Self-RAG)。自我RAG使LLMs能够动态获取相关段落,直到捕获整个上下文,所有这些都在指定的窗口内。

技术实现思路:

  1. 初始检索:模型接收到用户的查询后,首先进行一次初始检索,从外部知识库中获取相关段落。

  2. 生成初步回答:基于初始检索到的段落,模型生成一个初步回答。

  3. 动态检索:模型评估初步回答的完整性和准确性。如果认为需要更多信息,则进行进一步的检索,获取更多相关段落。

  4. 迭代过程:重复步骤2和3,直到模型认为已经获取了足够的上下文信息来生成准确的回答。

  5. 最终回答:基于所有检索到的段落,生成最终的回答。

  • 多模态RAG(Multimodal RAG)。多模态RAG通过将文本数据与图像和其他媒体结合,提供更深入的上下文理解,从而生成更准确和相关的回应。

除了RAG,我们可以将这些策略分为两部分:生成前策略和生成后策略。

生成前策略

生成前策略防止AI一开始就生成错误或误导性信息。这些包括:

  1. 提示链验证(CoVe)。这涉及模型对回应的自我验证。多阶段验证使其更高效。

https://github.com/ritun16/chain-of-verification

2. 通过提示优化(OPRO)。这是LLMs倾向于优化其自身提示,纠正提示输入。

https://cobusgreyling.medium.com/a-new-prompt-technique-from-deepmind-called-optimisation-by-prompting-opro-918b1057eacd

3.System 2 Attention(S2A)。这种方法改进了LLM的推理。这里使用了一个指令调优的LLM来识别、分析和提取输入上下文中最相关的部分,减轻不必要信息的影响。

https://jrodthoughts.medium.com/inside-system-2-attention-meta-ai-new-method-to-improve-reasoning-in-llms-4424751a6be1

4情感提示(EmotionPrompt)。这种技术通过提示使用情感线索,使LLMs能够获得更多的上下文和情感。

https://www.linkedin.com/pulse/tap-ais-emotional-edge-utilizing-emotionprompt-improved-patrick-bands-jrqzf

5. 回退提示(Step-Back Prompting)。这是一种用于改进LLM推理和解决问题技能的方法。

https://medium.com/@akriti.upadhyay/enhancing-llms-reasoning-with-step-back-prompting-47fad1cf5968

6. 重述和回应(RaR)。这种技术允许LLMs重述和扩展人类提出的问题/提示,帮助LLMs获得有见地的上下文。

https://vidrihmarko.medium.com/rar-prompt-rephrase-and-respond-is-ai-s-new-superpower-9931edf84ec5

生成后策略

生成后策略处理在生成后验证和纠正AI的输出。这些包括:

  1. 事实核查。实施human-in-the-loop (HITL)和知识库来验证LLMs提供的信息的准确性。

  2. 偏好对齐。使用人类反馈机制(RLHF)使LLMs的输出与人类的价值观和偏好对齐。

    这些策略旨在增强AI系统的可靠性,提高其输出质量,并确保其与人类价值观和事实准确性一致。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值