在数字化时代,企业数据管理变得至关重要。昨天群里小伙伴@我,问这个问题。
看到了,我打算用一篇文章通俗解说下:
数据中台、数据仓库、数据治理和主数据这些概念对于很多人来说仍显得抽象。用一些通俗的语言和生活中的比喻,深入解析这些关键概念。
一、数据中台:数据的“中央厨房”
想象一下,你是一家大型餐厅的厨师长,每天需要处理从不同供应商那里采购的多种食材。为了确保食材的新鲜、卫生与高效利用,建立一个中央厨房就显得尤为重要。这个中央厨房的角色就是数据中台在企业中扮演的角色。
数据中台整合来自不同业务部门、系统和渠道的数据,对其进行清洗、加工和标准化处理,然后再将处理后的数据提供给业务部门使用。就像中央厨房确保食材的质量和一致性,数据中台则确保数据的质量、一致性和可用性,从而更好地支持企业的决策和运营。
二、数据仓库:数据的“图书馆”
假设你是一位图书馆管理员,每天的职责是管理和维护图书馆中的成千上万本书。你必须确保每本书按照类别、作者、出版日期整齐有序地摆放,以方便读者查找和借阅。数据仓库在企业中的作用就像这个图书馆。它存储了大量历史数据和结构化数据,并按照一定的规则和格式进行组织。与数据中台不同,数据仓库更注重数据的长期保存和查询分析,提供强大的数据查询和分析能力,帮助企业深入了解市场、客户和业务流程,从而发现潜在的机会和风险。
三、数据治理:数据的“交警”
城市交通中,交警的职责是维护交通秩序,确保车辆和行人遵循交通规则,防止交通拥堵和事故发生。在数据世界中,数据治理就好比这样的交警。数据治理是对数据进行全面管理和规范的过程,确保数据的准确性、一致性、安全性和可用性,同时防止数据滥用和泄露。数据治理还负责制定数据管理的规章制度,监督数据的采集、存储、处理和使用过程,确保数据在整个生命周期中都得到妥善管理。
四、主数据:数据的“身份证”
最后,我们来谈谈主数据。每个人都有自己的身份证,它是个人身份的证明。在数据世界中,主数据就像是数据的“身份证”。主数据是企业内部最关键、最核心的数据,描述了企业的核心业务实体,如客户、产品、供应商等。主数据具有唯一性和权威性,是企业内部各部门和系统之间共享和交换数据的基础。通过管理和维护好主数据,企业可以确保数据的一致性和准确性,从而提高业务处理效率和决策质量。
因此:
对于大数据平台来说,主数据是非常重要的一类数据,几乎出现在所有的数据处理和分析中,具体到批处理和实时处理又有所不同。
- 对于批处理来说:
主数据可以同步自主数据管理系统的数据库,在数仓(数据仓库)体系下,几乎所有的主数据都是维度数据,需要建立相应的维度表以支撑业务查询和分析;
- 对于实时处理来说:
在各种流式计算的过程中也需要获取主数据进行关联处理,而实时处理要求主数据的获取也必须是实时的,这对系统的架构设计提出了挑战。如果原始的主数据管理系统对外提供了获取主数据的 API,对于普通的应用系统这是很有利的条件,它们可直接通过API 实时获得主数据。但是对于大数据系统来说,情况就不那么乐观了,因为大数据处理过程中的巨大吞吐量和流计算处理中对主数据的使用频率都远远超过一般的应用系统。如果大数据平台通过主数据管理系统的API 获取主数据,无论是从并发压力还是从响应的及时性上都可能无法满足要求,还有可能给主数据管理系统带来过大的负载,导致其响应缓慢甚至宥机。
为满足实时计算对主数据的需求,有两种可选的技术方案。
(1)方案一:
如果主数据体量不大,变更也不频繁,可以考虑将这些数据通过 API 读取到大数据工作节点的内存中,在数据处理过程中直接使用,然后周期性地从主数据管理系统同步最新状态的主数据。
(2)方案二:
改造主数据管理系统,引入内存数据库,如Redis, 针对所有主数据,除常规 持久化的业务数据库外,再配备一个内存数据库的副本,将这个内存数据库开放给大数据平台使用。
方案一的优点是架构简单,易于实现,但是对主数据有预设条件,不能成为一种广泛使用的方案。方案二是一套很完备的技术方案,可以满足各种主数据获取需求,代价是架构比较复杂,如果企业正在构建的是一整套大数据平台,方案二是值得一试的, 从技术上讲,主数据管理系统是一个相对传统的Web 应用,负责维护主数据的增删查改,同时对外提供获取主数据的 API, 对于大数据平台,最好提供以内存数据库为依托的数据读取服务。综合这些因素,企业在建设大数据平台时应该结合现状灵活地选择方案。
五、定位与差异:协同作战的团队成员
通过以上的比喻,我们可以更好地理解这些概念的定位和差异。数据中台作为数据的“中央厨房”,负责数据的整合和加工;数据仓库作为数据的“图书馆”,负责数据的存储和查询分析;数据治理作为数据的“交警”,确保数据的规范和安全;而主数据作为数据的“身份证”,确保数据的权威性和一致性。这些概念在企业中相互协作,共同构成完整的数据管理体系。就像一支协同作战的团队,数据中台负责调度和整合数据资源,数据仓库提供数据存储和查询支持,数据治理确保数据的安全和规范,而主数据确保数据的准确性和一致性。这个团队共同为企业提供了强大的数据支持,帮助企业更好地应对市场挑战和抓住机遇。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。