今天给大家分享的是来自曼彻斯特大学和阿尔托大学,被 NeurIPS 接受的论文:“Diffusion Twigs with Loop Guidance for Conditional Graph Generation”。论文使用了一个基于得分的扩散模型 Twigs,设计了多个扩散流并融入了条件信息。
贡献
-
论文引入了一个新的基于得分的扩散框架(Twigs),它使用多个扩散流,并融入条件信息。Twigs 针对主要信息(如图结构)使用一个 trunk 扩散过程,针对次要信息(如图属性、标签)使用多个 stem 扩散过程。这种不对称的结构促进了充分解耦了图结构的复杂交互和依赖关系,非常适合分子设计和优化。
-
在此基础上作者设计了一个新的条件扩散生成策略(Loop guidance)。这个策略不同于 classifier guidance 和 classifier-free guidance,允许在采样中的 trunk 和 stem 扩散过程之间进行动态信息交换,增强了结构-属性之间的信息交互。
-
作者通过去噪得分匹配理论,并利用随机微分方程形式化了本文的框架。如表 1 所示,本文模型是第一个利用 multiple asymmetric flows 的多条件扩散模型。
背景
条件扩散模型通常使用两类方法:classifier guidance 和 classifier-free guidance。前者需要单独训练一个分类器,后者同时集成有条件和无条件模型的得分函数。但是这两种方法没有针对像图这样的离散、分层且结构化的数据结构。已有工作将扩散过程建模为多个流,但它们将节点和边看作对称的数据。
作者提出了将扩散过程分为多个不对称的分层信息流,区别对待图中的异质数据结构。作者的方法有助于获得灵活的表示,解开图中复杂的相互作用和依赖关系。作者通过借鉴去噪分数匹配理论和随机微分方程(SDEs)来形式化文章的框架。最后作者利用分子和通用图数据集,在各种传统约束生成任务中进行验证证实了 Twigs 的有效性。
架构
作者定义了一个 trunk 过程,作用在像图结构 这样的主要元素上;还有一个 stem 过程,作用在每个单独的图属性 上。对于变量 ,作者将其同时包含节点特征、邻接矩阵还有坐标。表 2 展示了 Twigs 使用的条件扩散方法的 SDE 形式。
前向过程
作者在一个层次结构中定义了多个前向过程,将数据和属性共同演化为噪声。Trunk 扩散过程定义为:
其中 和 是对应的扩散项和漂移项, 是 Wiener 噪声。Stem 的 k 个独立变量 的扩散过程定义为:
反向过程
Twigs 的逆向过程从先验分布(高斯噪声)向数据分布逼近。与宋飏博士模型的关键区别在于,这里作者的变量 包含同时包含结构和属性,所以对整个扩散过程进行以下修改:
假设 trunk 和 stem 过程的联合分布被分解为:
所以,得分函数和反向过程就可以简化为:
条件建模
作者将条件表示为 。条件可以表示为标量或向量,用于描述与数据相关的变量。对于分子可以表示合成可及性(SA)分数或药物相似性定量估计(QED)。这个扩展修改了得分函数的联合分布,作者将得分函数 表示为:
训练和采样
算法展示了学习两种基于分数的模型训练过程: 用于近似于 trunk 变量, 用于近似于 stem 变量和 trunk 变量间的耦合。优化目标表示为下式:
生成新数据样本的 Twigs 算法如算法 2 所示。
实验
作者进行了单条件生成、多条件生成(QM9 数据集)、分子优化(ZINC250K 数据集)还有面向特性属性的社交网络图生成实验。
对于分子优化,目标是从 ZINC250K 数据集中生成对以下五个目标蛋白(parp1、fa7、5ht1b、braf、jak2)具有最佳结合亲和力、药物相似性和可合成性的分子,并使用两个指标对下面这些属性进行评估:对接分数(DS)、药物相似性(QED)和合成可及性(SA)。
第一个指标是新颖命中率:独特的命中分子中最大 Tanimoto 相似度小于 0.4 的分子比例。第二个指标是前 5% 新颖对接分数:满足 QED > 0.5 和 SA < 5 的前 5% 独特分子的平均 DS,且最大相似度小于 0.4。
Twigs 在生成具有最佳结合亲和力、药物相似性和可合成性的分子方面表现出色。在前 5% 对接分数和新颖命中率的评估中,Twigs 在除 braf 外的所有属性上均取得了最高分数,其表现仅次于 MOOD。
总结
作者介绍了一种新颖的方法,用于在生成模型中针对图数据建模条件信息。Twigs 通过引入循环引导机制,将扩散流分解为多个 stem 过程,然后将它们重新整合到主过程中,形成一个循环。实验结果表明,与当前最先进的基线方法相比,Twigs 在各种条件图生成任务中表现出显著的性能提升。
训练多个属性(即 stem 过程)可能会增加额外参数,导致训练时间增加。但作者在消融实验中表明,Twigs 仍然能够在较低的均方误差和较小的计算开销之间获得良好的权衡。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。