吴恩达:AI 时代,产品经理的核心技能和发展趋势

AI 的浪潮正在席卷各行各业,产品经理的工作方式也随之发生剧变。吴恩达在最新的分享中指出,传统冗长的 PRD 正在被具体、生动的示例取代,数据才是 AI 时代的 PRD。借助 Prompting 技巧和低代码工具,产品经理可以独立进行技术可行性评估和快速原型设计。本文将深入探讨这些变革,并结合吴恩达的观点,为 AI 时代的产品经理提供生存和发展的实用指南。

用数据定义 AI 产品:告别抽象 PRD

在传统的产品开发流程中,冗长而抽象的 PRD 文档是产品经理与工程师沟通的桥梁。但在 AI 时代,这种方式已经过时。正如吴恩达所强调的,“数据是你的 PRD”。训练机器学习模型需要数据,定义 AI 产品同样需要具体的数据示例。与其花费大量时间撰写复杂的 PRD,不如直接提供清晰的输入输出数据,让数据“说话”。

例如,你想开发一款智能客服聊天机器人。与其用抽象的语言描述它的功能,不如直接提供 10-50 个具体的对话示例,涵盖用户可能提出的各种问题,以及聊天机器人应该如何回答。这些具体的例子比任何文字描述都更清晰、更直观,也更符合 AI 开发的流程。

再比如,如果你想开发一个视觉系统来识别商品。与其描述系统的识别精度和范围,不如直接提供一组标注好的图片,清晰地展示哪些是需要识别的商品,哪些不是。如下图所示,清晰的标注可以帮助开发者理解“识别”的准确含义。

这些标注数据构成了 AI 系统的训练集,也为工程师评估技术可行性和构建系统提供了依据。构建数据集的过程可以从人工标注开始,逐渐过渡到使用生产环境中的真实数据。

快速验证可行性:产品经理也要懂技术

在 AI 时代,产品经理不仅需要理解用户需求,还需要具备一定的技术理解能力。吴恩达指出,对于许多基于 LLM 的应用,产品经理可以通过 Prompting 或编写少量代码来初步评估技术可行性。LLM 和低代码平台的出现,使得产品经理可以独立进行初步的技术可行性验证,而无需依赖工程师。

例如,你想开发一个邮件路由工具,可以尝试用 LLM 根据邮件内容判断应该路由到哪个部门。Prompting 是一种与 AI 对话的技术,通过向 LLM 输入特定的指令或问题 (Prompt),来引导其生成期望的输出。你可以利用 Prompting 技巧,快速评估 LLM 在特定任务上的能力。例如,对于上面提到的邮件分类工具,你可以向 LLM 输入一些示例邮件,并要求其将邮件分类到正确的部门 (客户服务、销售等),观察其准确率。

如果 LLM 能够达到较高的准确率,那么这个想法就具有较高的技术可行性。如果准确率较低,你也可以通过调整 Prompt 或提供更具体的示例来改进结果。

有时,简单的 Prompting 可能不足以评估复杂应用的可行性。例如,邮件分类系统可能需要访问公司的知识库才能做出准确的判断。这时,可以使用 RAG (Retrieval-Augmented Generation) 技术。RAG 将 LLM 与外部知识库连接起来,使其能够在生成回答之前先检索相关信息。你可以使用一些工具或简单的代码将 LLM 与公司的知识库连接起来,从而评估 RAG 在特定任务上的效果。

此外,AI 辅助编程工具,如 GitHub Copilot 和 Tabnine,正在降低编写代码的门槛。这些工具可以根据注释或已有的代码自动生成代码片段,极大地提高了开发效率。你可以利用这些工具编写简单的代码,例如连接 API 或处理数据,从而进行更深入的技术探索。

通过 Prompting 和 RAG 等技术,你可以快速验证不同的产品方案,并通过 A/B 测试等方法评估其准确率和可靠性。如果某个方案的准确率达不到要求,你就可以尽早放弃或调整方案,而无需等待工程师开发完整原型,从而大大缩短产品开发周期。此外,了解一些基础的 Python 编程知识,能够帮助你更好地利用 LLM 和低代码平台,更有效地进行原型设计和测试

人人都是开发者:快速原型设计和测试

在 AI 时代,原型设计不再是工程师的专属领地。Replit、Vercel’s V0、Bolt、Anthropic’s Artifacts 等低代码平台的出现,极大地降低了原型开发的门槛,即使没有编程经验的产品经理也能快速构建和测试原型。这些工具不仅可以用来验证产品创意,还可以用来快速收集用户反馈,迭代产品。

例如,你可以使用 Vercel’s V0 根据文本描述生成一个简单的聊天机器人界面,然后使用 Replit 编写一些简单的逻辑来连接 LLM API,从而构建一个可交互的原型。然后,你可以邀请用户进行测试,收集用户反馈,并根据反馈快速迭代原型。这种敏捷的开发方式可以大大缩短产品开发周期,并提高产品的成功率。

AI 产品经理的核心技能

AI 时代的产品经理,需要具备哪些核心技能才能脱颖而出呢?

  • 数据思维: 能够从海量数据中洞察用户需求,用数据驱动产品决策

  • 技术理解: 了解 AI 技术的基本原理和应用场景,能够与工程师有效沟通,特别是要理解 Prompting 和 RAG 等技术

  • 用户洞察: 深入理解用户痛点,将 AI 技术与用户需求结合起来,创造真正的价值。

  • 迭代思维: 拥抱快速迭代的开发模式,不断优化产品,适应快速变化的市场需求。

  • 实验能力: 熟练掌握 A/B 测试等方法,评估不同产品方案的效果。

AI 产品经理的未来:持续学习和进化

正如吴恩达所言,AI 产品管理是一个快速发展的领域,最佳实践也在不断演变。AI 技术日新月异,AI 产品管理的最佳实践也在不断进化。AI 产品经理需要保持持续学习的心态,关注 AIGC、生成式 AI 等前沿技术的发展趋势,不断探索新的工具和方法,才能在激烈的竞争中立于不败之地。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值