2025,AI世界的“大厦已成”,红杉资本的三大AI预测

本文整理自红杉资本的《AI in 2025: Building Blocks Firmly in Place》。

2024,是AI的“原始汤”之年。到了2025,这个赛道的地基已然稳固。

还记得今年年初,我们把ChatGPT的问世比作AI的“宇宙大爆炸”,预测2024将成为AI的“原始汤”之年——各种新想法与潜力涌现,充满能量但尚未成形。事实证明,这一年确实如此。从医疗、法律到保险,各行各业的AI项目如雨后春笋般涌现。而现在,基础设施的建设逐步步入正轨。

数据中心从宾夕法尼亚的Salem到德州的Round Rock再到威斯康星的Mount Pleasant正拔地而起,2025将是验证新点子的分水岭之年:什么是行得通的,什么是昙花一现。

以下是对2025年的三大预测:


大模型争霸进入“超级能力”时代,AI巨头分野初显

2024年,“五强”——微软/OpenAI、亚马逊/Anthropic、谷歌、Meta,以及xAI——达到了接近GPT-4的水平。到2025,五家公司将迎来全面差异化竞争,每家公司都挑选了自己的“武器”:

  • 谷歌:垂直整合的王牌
    谷歌凭借自研TPU芯片、顶尖的内部研究团队及一体化的数据中心建设模式,独步全场。垂直整合让谷歌从芯片到模型训练全面掌控供应链,为2025的进一步扩张打下基础。

  • OpenAI:无可匹敌的品牌号召力
    ChatGPT在消费者中的品牌认知度遥遥领先,帮助OpenAI在2024实现超36亿美元的收入。如果AI的胜负取决于用户心智占有率和企业渠道分发能力,OpenAI可能继续领跑。

  • Anthropic:人才优势
    2024年,大量顶尖研究人员从OpenAI流向Anthropic,公司还吸引了Instagram联合创始人Mike Krieger担任产品总监。在创始人Dario Amodei的领导下,Anthropic成为研究人员的首选目的地。

  • xAI:数据中心扩张的速度王
    凭借100,000颗GPU的Colossus集群,xAI刷新了数据中心建设速度纪录。如果规模真的决定一切,xAI已抢占先机,目标剑指200,000甚至300,000 GPU集群。

  • Meta:全力押注开源
    作为唯一一家全面拥抱开源的大玩家,Meta的Llama模型在开源社区中深受追捧。开源策略不仅快速推动技术普及,还帮助Meta在特定领域持续创新。

展望2025,这场“大模型争霸赛”将见分晓,赢家与输家逐渐明朗。


AI搜索——杀手级应用的崛起

2024年,各种AI应用如“AI女友”、“AI会计”等层出不穷。但到2025,“AI搜索”或将成为名副其实的杀手级应用。

  • Perplexity AI 月活用户突破千万。

  • ChatGPT搜索 的推出,直接挑战谷歌的搜索地位。《华尔街日报》甚至发文称:“搜索谷歌是老年人的习惯。”

相比传统基于索引技术的搜索引擎,AI搜索具备语义理解能力。无论是律师、医生还是分析师,AI搜索正在成为这些领域的“垂直工具”。

想象一下,法律专业人士使用Harvey,医生依赖OpenEvidence,而程序员默认用Github Copilot。AI搜索不仅更精确,还能通过专属界面和定制化数据源,与特定用户需求无缝对接。

未来,每位知识工作者可能会拥有至少两个AI搜索引擎:一个用于工作,一个用于日常生活。


CapEx稳定,AI计算力普惠化

2024年,巨头们在AI基础设施上的投资(CapEx)翻倍。但到了2025,投资趋于稳定。微软和谷歌已经显现出投入回归“新常态”的趋势,而Meta和亚马逊也可能在年中达到稳定状态。

随着数据中心的产能释放,AI计算成本将继续下降。这不仅对初创企业是好消息,还将进一步激发行业创新。

正如铁路塑造了工业革命时代的经济版图,数据中心正在成为AI时代的“新铁轨”。然而,这些“铁轨”上将承载怎样的“货物”?2025将是验证AI应用实际价值的一年。


2025年,AI行业的大厦已现雏形。现在,真正的挑战是如何用这些基础构件,搭建出改变世界的新能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值