麦肯锡逻辑思维方法论是一种结构化和系统化的思考框架,旨在帮助个人和组织高效地分析问题、制定策略并执行解决方案。这种方法论强调逻辑思考的重要性,包括识别问题本质、运用金字塔原理进行结构化思考、利用逻辑树分析法梳理问题和子问题、以及根据紧急性和重要性确定任务的优先级。麦肯锡方法论还包括7S模型,综合考虑战略、结构、系统、共享价值观、技能、人员和风格,以实现组织效能的最大化。通过这些工具和框架,麦肯锡的方法论帮助人们从不同角度审视问题,确保解决方案的全面性和实施的有效性。
一、麦肯锡逻辑思维方法论
-
逻辑思维:逻辑思维是一种基于理性和推理的思考方式,它依赖于有效的推理过程来得出结论。逻辑思维的核心在于确保推理的前提和结论之间有合理的联系,遵循逻辑规则,如矛盾律、同一律和排中律。
=
-
麦肯锡逻辑思维:麦肯锡逻辑思维是指麦肯锡咨询公司采用的一系列逻辑思维和问题解决技巧。这些技巧包括结构化思考、金字塔原理、逻辑树分析法等,旨在帮助咨询师系统地分析问题、提出假设并制定解决方案。
-
用逻辑思维思考:用逻辑思维思考意味着在面对问题和决策时,使用逻辑和理性分析来指导思考过程。这包括明确目标、识别论据、评估证据的强度,并基于这些信息做出合理的判断和决策。
-
如何掌握问题:掌握问题涉及到识别问题的本质、分析问题的原因和影响、以及确定解决问题的策略。这通常需要对问题进行深入研究,包括收集相关信息、识别关键因素、以及评估不同解决方案的可行性。
-
正确的逻辑思维引导:正确的逻辑思维引导是指使用正确的逻辑原则和方法来指导思考和行动,确保决策和解决方案的有效性。这包括避免逻辑谬误、确保论证的合理性、以及基于最佳可用证据做出决策。
-
麦肯锡五个工作原则:麦肯锡的五个工作原则是指麦肯锡咨询公司在进行咨询工作时遵循的核心原则,这些原则可能包括:
-
以事实为基础:所有分析和建议都基于坚实的数据和事实。
-
系统化思考:采用结构化的方法来分析问题和解决方案。
-
假设驱动:在收集数据之前先提出假设,然后通过数据来验证这些假设。
-
以客户为中心:确保所有的工作都围绕客户的需求和目标进行。
-
持续改进:不断寻求提高工作效率和质量的方法。
二、麦肯锡逻辑思维工具
-
金字塔结构:金字塔结构,又称为金字塔原理,是一种用于组织思想和沟通的逻辑框架。这种结构将主要思想放在顶端,然后沿着各个分支向下展开,层层递进地表达各项观点和支持论据。金字塔结构包括纵向关系(如递进关系、因果关系)和横向关系(如并列关系、对比关系)。这种结构有助于清晰地展示复杂的论点,使信息接收者能够容易理解和记忆。在麦肯锡,金字塔结构被广泛应用于报告撰写、演讲和问题解决中,以确保逻辑性和条理性。
-
反直觉思考:反直觉思考是指在分析问题和做决策时,挑战传统观点和直觉反应,采用更深入、更客观的分析方法。这种思考方式鼓励人们质疑表面现象,挖掘问题的本质,避免被直觉或偏见所误导。反直觉思考有助于发现问题的新解决方案,特别是在面对复杂或非线性问题时。麦肯锡顾问在解决问题时,会使用反直觉思考来识别和挑战既有假设,从而找到更有效的解决方案。
-
麦肯锡逻辑树分析法:逻辑树分析法是一种将复杂问题分解成更小、更易于管理的子问题的方法。这种方法通过构建一个分支结构(类似于树),将问题分解成多个可能的原因或解决方案,然后进一步分析每个分支,直到找到问题的根本原因或最佳解决方案。逻辑树分析法有助于系统地分析问题,确保所有可能的因素都被考虑到,并且可以优先处理最关键的因素。麦肯锡逻辑树分析法包括议题树、假设树和是否树等类型,适用于不同的问题解决场景。
-
成果思考:成果思考是指在项目或任务的每个阶段都关注最终成果和目标的思考方式。这种思考方式要求实施者时刻记住项目的最终目的,并以此为导向,确保项目的实施方向和方法都是正确的。成果思考有助于保持项目的焦点,避免偏离目标,确保资源的有效利用。在麦肯锡,成果思考是确保项目成功的关键因素之一,它要求顾问在解决问题的过程中不断回顾和确认项目的目标,以确保所有工作都朝着实现这些目标前进。
三、麦肯锡思维模型
-
紧急性和重要性决定优先级:这是一种时间管理和任务优先级排序的方法,通常通过“四象限法则”来实现。这种方法将任务根据紧急性和重要性分为四个类别:
通过这种方式,个人和组织可以更有效地分配资源和时间,确保首先完成对目标和结果影响最大的任务。
-
重要且紧急:这些任务需要立即处理,因为它们对结果有重大影响,并且时间紧迫。
-
重要但不紧急:这些任务对结果有重大影响,但不需要立即完成。它们通常是长期目标和项目的关键部分。
-
紧急但不重要:这些任务看起来需要立即完成,但对最终结果的影响较小。它们可能会分散我们的注意力,从更重要的任务上。
-
不紧急且不重要:这些任务既不紧急也不重要,可以推迟或委托给他人完成。
-
从问题背后着手问题本身逻辑:这种方法强调在解决问题时,不仅要关注问题表面的症状,而且要深入挖掘问题的根本原因。通过分析问题背后的因素,可以更有效地找到持久的解决方案。这种方法要求我们:
-
识别根本原因:通过逻辑分析和深入研究,找出问题产生的根本原因。
-
全面考虑:考虑所有可能的因素,避免片面或局部的解决方案。
-
质疑和反思:对现有的解决方案进行质疑,确保它们真正解决了问题的本质。
-
持续改进:即使问题看似解决,也要持续监控和改进,确保问题不会再次发生。
-
7S模型管理方法论:7S模型是麦肯锡公司开发的一种组织分析框架,用于帮助组织识别和管理关键的内部元素,以实现有效的组织变革和管理。模型包括以下七个要素:
-
战略(Strategy):组织的长期目标和计划。
-
结构(Structure):组织的架构,包括部门划分、层级和流程。
-
系统(Systems):管理组织内部流程和活动的系统,如信息系统、财务系统等。
-
共享价值观(Shared Values):组织的文化和价值观,指导员工行为和决策。
-
技能(Skills):组织成员的专业技能和能力。
-
人员(Staff):组织中的人力资源,包括员工的能力和潜力。
-
风格(Style):组织的领导风格和管理方式。
79页PPT
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。