“
还在担心单个 AI 员工 Devin 抢饭碗?现在一整个 AI 团队来了!MetaGPT 重磅发布 MGX (MetaGPT X),这是要让整个软件公司都失业了吗?
以前都说 AI 替代个人,现在直接替代一个团队了…
近日,MetaGPT 正式推出了划时代的自然语言编程产品 —— MGX (MetaGPT X)。这不是一个简单的 AI 助手,而是一个完整的 AI 开发团队,包含产品经理、架构师、工程师和数据分析师等多个角色。
AI 开发团队,以前都不敢想象,现在真的来了。
比 Devin 更强大的存在
还记得前阵子轰动一时的 AI 员工 Devin 吗?它被誉为能完全替代初级程序员的 AI。但 MGX 的野心显然更大 —— 它不是要取代单个开发者,而是要成为一个完整的软件开发团队。
24/7 不知疲倦的 AI 团队
让我们来认识一下这个"梦之队":
-
Mike(团队领导):统筹全局,管理团队协作
-
Emma(产品经理):负责需求分析和产品规划
-
Bob(架构师):设计系统架构和技术方案
-
Alex(工程师):负责具体代码实现
-
David(数据分析师):处理数据分析相关工作
这个 AI 团队最厉害的地方在于,他们能 24 小时不间断工作,并且完美配合。你只需要提出一个想法,他们就能自动完成从需求分析到代码实现的全过程。
为什么说它比 Devin 更酷?
-
团队协作:Devin 是单打独斗,而 MGX 是多角色协同
-
全流程覆盖:从产品设计到技术实现,一条龙服务
-
效率更高:多个 AI 角色并行工作,速度远超单个开发者
-
专业分工:每个角色都是各自领域的专家
实测下
让我们实际体验一下 MGX 的开发流程。只需一句简单的指令:“做一个 Blog,名称为 ‘AI智见录的 Blog’”,就能启动整个 AI 团队的协作。
1. 启动项目,组建团队
一个简单的需求输入,立即激活了由 Mike(团队领导)、Emma(产品经理)、Bob(架构师)、Alex(工程师)和 David(数据分析师)组成的 AI 开发团队。
2. 团队分工,任务分配
Mike 作为团队领导,迅速理解需求并做出决策:选用 VitePress 模板开发博客网站。他直接将任务分配给工程师 Alex,并表示会持续跟进开发进度。
3. 高效执行,快速交付
Alex 仅用几分钟就完成了网站的基础搭建工作,实现了:
-
设置网站标题为"AI智见录的 Blog"
-
创建导航栏,包含首页、文章和关于页面
-
设计美观的首页布局,包含特色介绍板块
-
准备了文章列表页面的基本结构
4. 成果展示,即刻可用
最终呈现的网站美观大方,完全符合现代设计风格:
-
清晰的网站标题与副标题
-
优雅的导航菜单布局
-
醒目的"开始阅读"和"关于我"按钮
-
专业的技术博客定位说明
整个过程展现了 MGX 团队协作的高效性:从需求输入到功能完整的网站上线,整个过程行云流水,充分体现了 AI 团队的专业素养和默契配合。
太酷了,这简直就是软件公司的终结者!这个创意很好!
有个体验上不太好的是,第一次,初始化团队服务特别慢,等了大概 20 分钟。
收费计划
MGX 采用信用点数制,每个项目消耗的点数取决于对话轮次和复杂度。目前,1000 万信用点数大约可以完成 40 个标准项目(基于 Claude 3.5 Sonnet)。不过要注意的是,多轮对话会消耗更多点数。
五档价格方案
- 免费版
-
每天 75 万信用点数
-
每月共 250 万信用点数
-
每次对话最多 3 条消息
-
适合体验和学习使用
- 专业版 20($20/月)
-
每月 1000 万信用点数
-
支持所有高级功能
-
适合业余爱好者探索和使用
-
性价比极高的入门方案
- 专业版 70($70/月)
-
每月 3500 万信用点数
-
支持所有高级功能
-
面向需要每周多次使用的专业人士
-
适合小型开发团队
- 专业版 200($200/月)
-
每月 1 亿信用点数
-
支持所有高级功能
-
为需要日常支持的重度用户设计
-
适合中型开发团队使用
- 专业版 500($500/月)
-
每月 2.5 亿信用点数
-
支持所有高级功能
-
为依赖 MGX 持续支持的高级用户定制
-
作为核心生产工具使用
-
适合大型开发团队或企业使用
对比传统开发团队动辄数万美元的月薪支出,如果真的能替代一个团队,MGX 的定价可以说是相当实惠了。即使选择最高端的专业版 500 套餐,相比雇佣一个初级程序员的成本都要低得多,更不用说这是一个 24/7 不知疲倦的完整开发团队。
这是软件公司的终结者吗?
据 MetaGPT 介绍,MGX 在内测阶段表现惊人。它能完全替代初级和中级开发团队,而且成本只需几美元。这让人不禁要问:传统软件公司该何去何从?
不过专家指出,目前 MGX 更适合标准化的开发任务。对于需要深度创新和复杂业务理解的项目,人类团队仍具有不可替代的优势。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。