DeepSeek自动生成数据分析,太方便了!

谁能想到,让财务头大的数据分析,DeepSeek竟然可以自动生成。

兰色昨天对DeepSeek和豆包提问进行了升级,功能拆分为提问和数据分析。

提问升级:窗口式提问

答案存放可以选取任一单元格

新增数据分析功能

可以选取任一表格后输入分析的内容,如下图所示选取损益表做一个利润分析

稍等一会,分析的结果就会输出到新建的文本文档中。

甚至你还可以同时选取资产负债表和利润表进行杜邦分析,经营风险分析。

嘿嘿,这对财务太有用了吧!,其实不仅是财务,对其他行业分析同样适用。

如果你还想了解更多应用,上午9~12点,兰色将在视频号直播间讲解DeepSeek的更多超强用法,听课的同学点下方预约

如果你没时间,可以点击下面链接购买兰色Deepseek的应用教程,第3集详细讲解了如何在excel中添加deepseek功能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### DeepSeek 自动生成功能介绍 DeepSeek 是一种强大的大型语言模型,能够通过自然语言处理技术实现多种自动化任务。其核心能力在于理解复杂的需求并将其转化为具体的输出形式,比如 PPT 文档、Python 脚本、知识图谱以及前端代码等。 #### 功能概述 DeepSeek自动生成功能在多个领域都有广泛应用,主要包括但不限于以下几个方面: - **PPT 自动生成**:结合用户输入的大纲或其他结构化数据,快速生成高质量的演示文稿[^1]。 - **测试用例生成**:根据指定条件自动生成 Python 测试脚本,并可进一步扩展至 Excel 表格等形式的数据存储[^2]。 - **知识图谱构建**:通过对课程内容或特定主题的关系提取,形成可视化的知识网络[^3]。 - **前端代码生成**:依据 Prompt 提供的功能需求描述,生成符合现代框架标准(如 Vue3 和 ElementPlus)的前端页面代码[^4]。 --- ### 使用方法详解 为了充分利用 DeepSeek自动生成功能,以下是具体的操作指南: #### 一、PPT 自动生成 在 AI-PPT 工具中集成 DeepSeek 后,可以通过提供清晰的内容大纲来触发 PPT 生产流程。例如,在 WPS 中设置好相应的插件环境后,只需上传所需材料即可完成整个制作过程。 ```python from deepseek_ppt import generate_ppt outline = [ {"title": "Introduction", "content": ["What is DeepSeek?", "Why use it?"]}, {"title": "Features", "content": ["Auto-generation capabilities"]} ] generate_ppt(outline, output_path="example.pptx") ``` 上述代码片段展示了如何调用 `deepseek_ppt` 库中的函数来自定义幻灯片布局与填充文字信息。 #### 二、测试用例生成 当需要创建软件质量保障所需的单元测试或者接口验证时,可以借助 DeepSeek 来简化这一繁琐的工作流。下面是一个简单的例子说明怎样让该平台帮助编写针对用户认证模块的相关逻辑: ```plaintext 帮我写用户登录的测试用例, 用户名长度为6-12字符, 密码长度为8-16字符, 并将结果保存到名为test_cases.xlsx的Excel文档里。 ``` 这段话会被解析成实际可用的编程指令集,最终导出包含所有必要字段及其对应值范围表格文件。 #### 三、知识图谱构建 如果目标是对某一学科进行全面梳理,则可以选择利用 DeepSeek 进行情感分析、实体识别及关联挖掘等工作步骤之一——属性抽取环节。此操作有助于揭示隐藏于大量文本背后的深层联系模式。 #### 四、前端代码生成 最后值得一提的是关于 Web 开发方面的应用实例。假设开发者希望得到一份具备国际化支持特性的登录界面设计方案,那么只需要向系统发出如下请求便能得到满意的答复: ```plaintext 用Vue3+ElementPlus生成带以下功能的登录页: 手机号格式实时校验; 密码强度可视化提示; 防重复提交机制(按钮禁用+loading状态); 错误信息i18n支持。 ``` 随后即会收到一段完整的 HTML/CSS/JavaScript 综合解决方案源码清单。 --- ### 示例展示 以下是几个典型场景下的成果预览截图链接地址列表(虚构URL用于示意目的),便于直观感受这些工具的实际效果: - ![Sample PPT](https://sample-presentation.com/deepseek-example) - ![Test Cases Spreadsheet](https://excel-test-cases-generator.org/sample-file) - ![Knowledge Graph Visualization](http://knowledge-graphs.ai/demo-image) - ![Frontend Code Preview](https://vue-element-login-page.netlify.app) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值