Deepseek 如何快捷处理Excel数据与图表——大模型赋能日常办公教程

对Excel表格数据的处理,是我们“搬砖一族”劳心戮力的常规任务之一

平时还好,一旦涉及到数据预处理阶段诸如“数据清洗”这样包含缺失、重复、异常与格式类型合并与转换 等繁琐的步骤时,就很容易烦躁;

所以本期我们来看看Deepseek如何助我们“动动嘴皮子”简单对话就快捷搞定Excel表格的繁琐工作

ps:先附 #AI+Excel方案简介表 # 解解馋(直接保存即可)⬇️⬇️

依上,我们来详细演示AI协作Excel表格的制作与数据处理方法⬇️

A——【手机APP制作流程】

当前市面各厂家的大模型APP其实都可以直接对话要求(内容或上传文档给它后)生成表格;

但目前只有“文小言”可以在帮我们生成表格后支持一键导出~

其他大模型的APP都需要自己复制内容再去Excel中自己慢慢排版调整,会麻烦许多;

所以当电脑不在身边还需要快速制作Excel表格时,我一般就两种思路⬇️⬇️

1.直接向文小言提问——然后再请它按表格呈现——⏬导出到本地WPS或微信文件传输助手(内容输出和要点概括也可以请 DeepSeek 完成直接粘贴给文小言生成)

2.⏫上传已有文档请文小言先按要点总结——再按表格呈现——⏬导出到WPS或微信文件传输助手;

  • 我们来看一下实操步骤演示:

B——【电脑端编辑处理💻】

B1:在线编辑制作

这里最好用的毋庸置疑是ChatExcel(北大团队开发),用简单的对话聊天交互来完成Excel表格和数据的处理⬇️⬇️

来上实操图解👉👉

1.打开浏览器,点击访问官网:https://www.chatexcel.com/

2.注册登录后,右边下角对话框即可将模型换成DeepSeek⬇️

3.接着我们按照这样的顺序来实操演示一下⬇️

4.首先是排名类表格的数据清洗演示,我在对话框请Deepseek把表格空白区域有缺失的异常值先删除,再去除空白行后下载⏬

可以看到指令发出后,Excel借助Deepseek的推理能力开始自动分步骤执行处理了⬇️

然后我们点击下载即可,500行的数据,很简洁的就处理完了,后续还可以继续提要求“居中”等微调一下

5.我们再来看一下数据可视化图类📊制作方法,选一个数据跨行再组合的图表,给上上难度

可以看到它就继续按步骤分析,给安排起来了,生成的速度和效果俱佳👍

这样的图表就很成熟了,我们下载即用⬇️⬇️~

6.还有更多行业专题样例演示和模版广场的各行业模板供我们挑选,还是很赞的~

B2:办公软件接入Deepseek(这里自然是免费的插件形式最为便捷)

实测体验下来,为大家演示两款支持直接调用Deepseek,

且均支持接入WPS和Microsoft Excel的插件用法⬇️⬇️

  • “不坑盒子”插件(https://www.bukenghezi.com/)

    【浏览器搜索🔍并下载 2025新版 ,优势在于调用Deepseek流畅响应不卡顿】

安装完毕后,我们直接点击“智能助手”,输入具体单元格或范围调整需求⬇️

“查看详情”里面会根据需求运行VBA代码并自动执行结果~

  • “OfficeAI”插件(https://www.office-ai.cn/)

    【浏览器搜索🔍并下载安装后,侧边栏直接就可以调用,优势在于稳定,支持的大模型多】

我请它帮忙先后完成插入多个图片、数据累加与图表制作这三个任务,响应速度很不错;

不过我用的是本地部署的蒸馏版本DeepSeek,跟满血版不是一回事哈~

当然,API Key 支持调用的大模型可选项更多,在Deepseek官网暂时不可以充值之前,大家可以用别的试试看,只是需要精准描述~

就从任务驱动而言,国内其他一线大模型在插件中完成此类任务的质量还是不错的!(Deepseek的强项在于推理和内容生成)

Excel表格无论是日常办公还是相对专业的数据预处理阶段都是很重要的“搬砖”工具:

从格式和颜色背景再到简单的数据清洗与可视化图标的制作呈现,

以Deepseek代表的国产优秀AI大模型都可以嵌入到我们的工作流程中,有效地提升了我们的数据处理效率和精度~

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何在 Excel 中集成 DeepSeek 功能 为了在 Excel 中集成 DeepSeek 的功能,可以通过安装 OfficeAI 助手插件来实现这一目标。一旦安装完成,用户可以直接在 Excel 表格内向 DeepSeek 提问并获取即时的回答[^1]。 #### 安装 OfficeAI 助手插件 对于希望利用 DeepSeek 来增强工作效率的用户来说,第一步是下载并安装适用于 Microsoft Office 应用程序(包括 Excel 和 Word)的 OfficeAI 助手插件。该插件允许使用者无需离开当前工作环境即可访问强大的 AI 工具和服务。 #### 使用 DeepSeek 进行查询 成功安装之后,在 Excel 界面中会新增一个用于输入问题或命令的小窗口。通过这个界面,用户能够轻松地针对表格中的数据提出复杂的问题,并由 DeepSeek 处理返回精准的结果。这种交互方式极大地简化了数据分析流程,提高了处理速度和准确性。 ```python # 示例 Python 代码展示如何调用 API 获取帮助 (假设存在这样的接口) import requests def ask_deepseek(question): url = "https://api.deepseek.com/v1/query" payload = {"question": question} response = requests.post(url, json=payload).json() return response['answer'] print(ask_deepseek("解释一下什么是机器学习?")) ``` 值得注意的是,虽然目前的信息主要集中在微软旗下的产品上,但是也有讨论关于将相同的技术应用于其他办公软件如 WPS 上的可能性[^2]。不过具体实施细节可能有所不同,因为不同平台之间的兼容性和特性有所差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值