最近DeepSeek爆火,我也注意到扣子平台独家推出了DeepSeek FunctionCall的能力,这就开辟了一条新路:利用DeepSeek强大的思考推理能力,再加上扣子插件商店(国内最完备的插件生态),以及知识库等能力,帮助解决给文章起标题和生成封面这两件累人的事情。
除了DeepSeek之外,扣子平台也提供了豆包、通义千问、智谱、Kimi、百川等各种大模型,你可以随意挑选自己喜欢的来使用。
01.智能体整体设计
我要创建的是一个智能体,智能体的模型选择了“DeepSeek-R1 工具调用”,它主要使用两个插件和知识库来完成我的需求。
知识库:存放之前的文章标题
链接读取插件:给定一个链接,读取链接的内容
图像生成插件: 根据提示词来创建图像
具体的执行过程是这样的:
-
智能体读取知识库中的历史文章标题,发给DeepSeek
-
DeepSeek调用 “链接读取插件” 获取链接内容
-
DeepSeek总结文章内容生成 10 个备选标题,提示用户选择
-
DeepSeek 根据用户选择的标题,调用 ImageToolPro ,生成图片链接。
02.创建智能体
基本设置
扣子平台支持两种类型的AI项目,一种是“智能体”,另外一种是“AI 应用”,这里选“创建智能体”
在编排界面,大模型选择“DeepSeek-R1·工具调用”
创建知识库
知识库里要存放标题历史数据,我这里选择表格。
事先我已经准备好了一个Excel,里边都是码农翻身公众号之前的标题,把它们导入进来,就是这个样子:
添加插件
然后添加两个插件,一个是“链接读取”,另外一个是“ByteArtist”,都是扣子官方出品,非常稳定。
写提示词
基本的设置完成以后,接下来就是写提示词了,我最初写的是这样的:
你是一位图片生成和标题创作大师,当用户提供链接时,调用LinkReaderPlugin插件读取链接的内容,然后查看码农翻身标题数据集,根据其中的风格创作10个标题,让用户选择,然后根据用户选择的标题扩展成提示词,调用ImageToolPro生成图片。
这样的提示词平淡无奇,我就让扣子自动优化了一下。
说实话,优化得相当好,这么长的提示词,我自己是写不出来的。
到目前为止,智能体就创建完成了,非常简单,对吧?
这也是扣子的强大之处,无论你是否有编程基础,都可以在扣子上轻松发挥出自己的创意,创建各种智能体。
04.测试一下
扣子提供了一个预览和调试的功能,我直接发一个链接给我的智能体“公众号小助手”。
这个链接的内容讲的是Unix时间戳的诞生历史。
看看DeepSeek思考过程挺有趣的,它搜索了知识库,调用LinkReaderPlugin的时候,还自动设置了type为全文,skip_cache为true,然后还分析了我的标题风格,说通常带有悬念或者疑问… 对文章内容的分析也很准确。
它根据我之前的标题风格,构思出的标题是这样的:
你看它构思的《Unix 诞生的那个深夜,Ken Thompson 遇到了这个世纪难题》,《1969 年,当妻子回娘家的三周里,他悄悄改变了世界》还真是不错。
如果你觉得它生成的标题都不合适,可以让它继续生成,直到满意为止。
我选择了一个标题,让它生成图片,同样,不满意的话可以调整下,让它继续生成,试了两次,选了这个:
总结
这篇文章提到的方法只是涉及到标题生成和图片生成,实际上扣子平台的智能体覆盖的范围非常广泛,它可以写作文案、生成故事、执行代码、语音播报… 还可以联网查询天气、股市、时事新闻、汇率… 你不需要有任何编程基础,就可以轻松创建一个符合自己需要的智能体。
如今扣子又独家支持 Deepseek Functiocall 能力,相当于让DeepSeek可以调用海量的插件,极大地拓展了智能体的能力边界,现在能限制你的,只有你的想象力了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。