Crawl4AI 是当前 GitHub 上最热门的开源项目之一,由一群充满活力的开发者社区持续维护。它为大语言模型(LLMs)、AI代理和数据管道量身打造,提供了极速、AI就绪的网页抓取体验。开源、灵活、专为实时性能设计,Crawl4AI 让开发者在速度、精准度与部署效率上都拥有绝对优势。
Crawl4AI 的创始人是一位对技术和数据提取充满热情的计算机科学家。从童年接触 Amstrad 电脑,到研究生期间专注于自然语言处理(NLP),创始人一直致力于探索网络数据的潜力。早期,他们开发了用于组织研究论文和提取出版物信息的爬虫工具,为 Crawl4AI 的诞生奠定了基础。
2023 年,创始人在一个项目中需要将网页转换为 Markdown 格式。现有解决方案要么不是真正的开源(需要账户和 API 令牌),要么质量不佳,甚至收费高达每月 16 美元。这种挫折感促使创始人开发了自己的工具。在短短几天内,Crawl4AI 问世,并迅速走红,成为 GitHub 上排名第一的趋势仓库,获得数千个星标和全球社区的认可。
Crawl4AI 的开源化基于两个核心理念:一是回馈支持创始人职业生涯的开源社区;二是推动数据民主化,确保数据不被付费墙或少数公司垄断。
功能与特性
Crawl4AI 提供了一系列强大的功能,使其在网络爬虫工具中脱颖而出,特别是针对 AI 应用的优化。以下是其主要特性:
1. Markdown 生成
Crawl4AI 能够将网页内容转换为干净的 Markdown 格式,适合检索增强生成(RAG)管道和直接输入 LLM。这种格式确保数据结构良好且最小化处理,便于 AI 模型使用。
2. 结构化数据提取
工具支持 LLM 驱动和传统(CSS/XPath)数据提取方法。用户可以根据需求选择精确的 CSS/XPath 提取或适应性更强的 LLM 提取。
3. 浏览器集成
Crawl4AI 提供高级浏览器控制功能,包括会话管理、代理支持和隐身模式。这对于需要身份验证或具有反爬虫措施的网站尤为重要。
4. 爬取与抓取
除了文本,Crawl4AI 支持媒体提取、动态内容爬取、截图和原始数据提取。它还提供链接提取、自定义钩子、缓存和元数据处理,适用于多种爬取任务。
5. 部署
Crawl4AI 支持 Docker 化部署,方便在不同环境中使用。它还提供安全认证和 API 网关,适合生产环境。
6. 性能
工具设计为高性能,支持并行爬取、基于块的提取和实时用例,确保大规模任务的高效完成。
此外,Crawl4AI 还包括独特功能,如:
- 世界感知爬取:允许设置地理位置、语言和时区,模拟不同用户环境。
- 表格到 DataFrame 转换:自动将 HTML 表格转换为 pandas DataFrame,便于分析。
- 浏览器池:高效管理多个浏览器实例。
- 网络/控制台捕获:捕获网络请求和控制台日志,用于调试。
如何使用
🔧 安装 Crawl4AI:
# 安装正式版
pip install -U crawl4ai
# 如果想体验预发布版本
pip install crawl4ai --pre
# 安装后初始化配置
crawl4ai-setup
# 检查安装是否成功
crawl4ai-doctor
如果遇到浏览器相关的问题(比如页面打不开),可以手动安装浏览器依赖:
python -m playwright install --with-deps chromium
🚀 用Python快速启动一次网页抓取:
import asyncio
from crawl4ai import *
asyncdefmain():
asyncwith AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
)
print(result.markdown)
if __name__ == "__main__":
asyncio.run(main())
🖥️ 也可以直接用命令行操作:
# 简单爬取网页,并输出为Markdown
crwl https://www.nbcnews.com/business -o markdown
# 使用广度优先搜索(BFS)策略进行深度爬取,最多抓取10页
crwl https://docs.crawl4ai.com --deep-crawl bfs --max-pages 10
# 配合大模型,提取网页中特定信息
crwl https://www.example.com/products -q "提取所有商品价格"
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。