你是否遇到过这样的情况?问 ChatGPT 一个简单数学题,它可能答错;但如果你给它一个计算器工具,它瞬间变成“数学天才”。这背后,正是AI 智能体(AI Agent)的魔法——让 AI 不仅能“回答”,还会“思考、规划和行动”!今天,我们就来解密这一技术跃迁的全程。
你是否想过,为什么现在的AI助手越来越懂你?从单纯回答问题,到现在能帮你安排会议、订餐甚至写代码,这背后离不开AI Agent技术的革命性进步。
让我们一起揭开AI Agent的神秘面纱!👇
🧠 什么是AI Agent?
想象你的冰箱不仅能自动补货,还会根据你的浏览记录建议改用杏仁奶——这就是AI Agent的魔力!
简单来说,AI Agent是具备自主决策能力的智能系统,它能:
✅ 感知环境
✅ 处理信息
✅ 做出行动
就像一名全能型数字助理,它不再局限于简单的互动响应。
⚙️ 从聊天机器人到AI Agent的进化之路
1.0时代:传统聊天机器人
❌ 只能按预设规则回复
❌ 响应内容固定不变
❌ 复杂问题必须人工接管
2.0革命:LLM驱动型聊天机器人
✔️ 突破性采用Transformer架构
✔️ 能够生成类人的原创内容
✔️ 但存在"幻觉"问题(可能生成错误但逻辑通顺的内容)
3.0飞跃:RAG系统和AI Agent问世
🌟 检索增强生成(RAG) 技术让AI能接入外部数据源
🌟 工具调用能力让AI可以编程执行API操作
🌟 多步规划使复杂任务拆解成为可能
🤖 AI Agent的核心组件揭秘
1️⃣ 感知模块 - 数字版的"眼睛"和"耳朵"(摄像头/麦克风/数据流)
2️⃣ 推理引擎 - 决策大脑,采用最新的神经网络技术
3️⃣ 执行机构 - 数字版的"手",负责行动输出
4️⃣ 知识库 - 储备海量专业知识的记忆体
5️⃣ 学习系统 - 能持续自我优化的成长系统
✅ AI Agent如何改变我们的生活?
🚗 智能驾驶
感知路况→规划路径→执行操作的全闭环系统
能应对突发情况的"数字老司机"
🏥 精准医疗
分析病例→检索最新研究→推荐治疗方案
7×24小时在岗的"AI医生助理"
🏠 智能家居
学习你的习惯→自动调节温湿度→智能场景联动
比你更了解你的"数字管家"
##❗️需要注意的风险与挑战 1️⃣ 伦理困境 - 当AI掌握过多个人信息,便利与隐私如何平衡?
2️⃣ 数据依赖 - 对外部数据的过度依赖可能导致系统风险
3️⃣ 幻觉问题 - 事实性错误需要RAG等技术持续优化
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。