大模型应用的关键,不只是构建好模型算法,更重要的是做好数据的处理、挖掘等问题。数据贯穿了大模型从预训练到产业落地的全过程。一定程度上,智能时代,企业数据处理****能力有多强,决定了业务发展的天花板有多高。
而能力再强大的 LLM 也只能取代人部分学习和推理能力,无法取代存储和访问数据的能力;参数再多的 LLM 也不能仅凭基于通用数据的训练就能精确表达企业内部海量且丰富的数据。而处理这类数据,才是私有化场景的主要需求。
- 一方面,企业很难把自己具有核心竞争力的数据放到大模型中去训练;
- 另一方面,企业的业务数据变化速度快,且实时性强,因此私有化部署后的大模型、在数据层上也很难做到秒、天级别的更新。
本文将带您构建一个集大模型推理、智能检索、知识加工于一体的本地知识库系统,深度融合DeepSeek认知大模型的语义理解能力、RagFlow的文档智能处理能力以及Ollama的本地化部署优势。该系统具备三大核心价值:
- 私有化部署:数据全程在本地流转,杜绝信息外泄;
- 强大的文档处理:自带OCR,能够通过深度文档理解模块智能提取和组织信息,支持多种异构数据源,包括Word、PPT、Excel、TXT、图片、扫描件、结构化数据、网页;
- 支持多种模型:在Ollama的加持下,支持本地部署市面上大部分权重开源模型(如qwen系列、deepseek、ollama、qwq、glm等),也支持在线Web API调用、支持硅基流动等平台;
本文将以DeepSeek、RagFlow、Ollama为核心,手把手带你搭建一套支持GPU加速的私有知识库系统,助你快速实现AI技术的本地化部署与私有知识管理。
一、环境准备
本文基于 Ubuntu 22.04 LTS 系统,使用了 NVIDIA A10显卡在ollama上部署了deepseek 32b模型,如果显卡性能不够的话,也可以部署14b或者7b的小模型,系统整体包括以下组件:
Docker:容器化运行环境
Ollama:本地大模型推理引擎
RagFlow:RAG(检索增强生成)框架
MinIO/MySQL/Redis:存储与缓存基础设施
二、DeepSeek + RagFlow + Ollama 实战指南
2.1、安装Docker
在这里插入图片描述
Docker是一个开源的容器化平台,能够帮助我们在隔离的环境中运行应用程序。在安装之前,首先更新索引:sudo apt update
其次输入指令sudo apt install docker.io
使用apt安装docker:安装成功后可以使用
docker -v
查看docker版本,使用docker ps
查看当前docker container情况:能够显示内容,则说明docker安装成功!
2.2、镜像安装Ollama
Ollama是一个轻量级的模型服务框架,支持多种深度学习模型的部署和管理。它提供了简单的API接口,方便用户快速部署和使用模型服务。
Ollama的安装非常简单,这里我们可以通过Docker来快速部署,在国内环境下,一般使用
docker pull ollama/ollama
会报 docker error response from daemon: get "https://registry-1.docker.io/v2/
错误,这是因为服务器无法访问到对应网站。
这里可以采用国内镜像网站加速的方案:https://github.com/dongyubin/DockerHub
比如,这里使用docker.1ms.run镜像网站拉取ollama:
sudo docker pull docker.1ms.run/ollama/ollama
拉取后要记得使用docker tag 重命名为ollama/ollama,即:
:docker tag docker.1ms.run/ollama/ollama ollama/ollama
在这里插入图片描述
2.3、以GPU模式启动Ollama
如果你的机器配备了NVIDIA GPU,可以通过NVIDIA Docker工具包来启用GPU加速。
首先输入以下指令配置添加NVIDIA Docker仓库并安装NVIDIA Docker 2.x:
# 安装NVIDIA Docker工具包
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
然后以GPU模式启动Ollama容器
sudo docker run -d --gpus all -p 8080:8080 --name ollama ollama/ollama
2.4 、安装RagFlow
RagFlow是一个基于RAG(Retrieval-Augmented Generation)框架的工具,能够结合检索和生成模型,提供更精准的问答服务。它通过从知识库中检索相关信息,再结合生成模型生成答案,显著提升了问答系统的准确性。
在这里插入图片描述
使用sudo docker compose -f docker-compose-base.yml up -d
安装,一般会报错:这里可以同样采用刚刚的方法,打开docker-compose-base.yml文件,找到报Error的镜像名称和版本号:
使用同样的方法先下载,再用tag重命名:
如此同样的方法下载infinity、mysql、minio、redis:
分别安装完成后,再输入一遍
sudo docker compose -f docker-compose-base.yml up -d
,检查是否全部下载完成,如果显示如下则说明全部下载完成:下载好基础镜像后,还需要根据需求安装对应版本的RagFlow,这里选择安装Linux GPU版本:
输入
sudo docker compose -f docker-compose-gpu.yml up -d
安装GPU版本的RAGFlow
输入
sudo docker ps -a
可以看到目前运行的镜像状态,显示有ragflow-server、mysql、minio、redis、es、ollama这些镜像才算成功启动,如下:输入对应的ip或者域名即可访问:
这样你就成功搭建了一个的本地私有知识库系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。