项目简介
DeepSearcher 结合推理LLMs(OpenAI o1、o3-mini、DeepSeek、Grok 3、Claude 3.7 Sonnet、QwQ 等)和向量数据库(Milvus、Zilliz Cloud 等)以对私有数据进行搜索、评估和推理,提供高度准确的答案和全面报告。此项目适用于企业知识管理、智能问答系统和信息检索场景。
🚀 特点
- 私有数据搜索:最大化利用企业内部数据的同时确保数据安全。必要时,可集成在线内容以提供更准确的答案。
- 向量数据库管理:支持 Milvus 和其他向量数据库,允许数据分区以提高检索效率。
- 灵活的嵌入选项:兼容多种嵌入模型,以实现最佳选择。
- 多种支持:支持 DeepSeek、OpenAI 和其他大型模型进行智能问答和内容生成。
- 文档加载器:支持本地文件加载,正在开发网页爬取功能。
🎉 示例
快速开始
安装
使用 pip 安装 DeepSearcher:
# Clone the repositorygit clone https://github.com/zilliztech/deep-searcher.git
# MAKE SURE the python version is greater than or equal to 3.10# Recommended: Create a Python virtual environmentcd deep-searcherpython3 -m venv .venvsource .venv/bin/activate
# Install dependenciespip install -e .
准备您的 OPENAI_API_KEY
到环境变量中。如果您更改配置中的LLM,请确保准备相应的 API 密钥。
快速开始演示
from deepsearcher.configuration import Configuration, init_configfrom deepsearcher.online_query import query
config = Configuration()
# Customize your config here,# more configuration see the Configuration Details section below.config.set_provider_config("llm", "OpenAI", {"model": "o1-mini"})config.set_provider_config("embedding", "OpenAIEmbedding", {"model": "text-embedding-ada-002"})init_config(config = config)
# Load your local datafrom deepsearcher.offline_loading import load_from_local_filesload_from_local_files(paths_or_directory=your_local_path)
# (Optional) Load from web crawling (`FIRECRAWL_API_KEY` env variable required)from deepsearcher.offline_loading import load_from_websiteload_from_website(urls=website_url)
# Queryresult = query("Write a report about xxx.") # Your question here
配置详情:
LLM 配置
config.set_provider_config("llm", "(LLMName)", "(Arguments dict)")
“LLMName” 可以是以下之一:[“DeepSeek”, “OpenAI”, “XAI”, “SiliconFlow”, “PPIO”, “TogetherAI”, “Gemini”, “Ollama”]
“Arguments dict” 是一个字典,包含 LLM 类所需的参数。
嵌入模型配置
config.set_provider_config("embedding", "(EmbeddingModelName)", "(Arguments dict)")
“EmbeddingModelName” 可以是以下之一:[“MilvusEmbedding”, “OpenAIEmbedding”, “VoyageEmbedding”, “SiliconflowEmbedding”]
“参数字典”是一个包含嵌入模型类所需参数的字典。
向量数据库配置
“VectorDBName” 可以是以下之一:[“Milvus”](开发中)
“Arguments dict” 是一个包含向量数据库类所需参数的字典。
文件加载器配置
config.set_provider_config("file_loader", "(FileLoaderName)", "(Arguments dict)")
网络爬虫配置
config.set_provider_config("web_crawler", "(WebCrawlerName)", "(Arguments dict)")
“WebCrawlerName” 可以是以下之一:[“FireCrawlCrawler”, “Crawl4AICrawler”, “JinaCrawler”]
“Arguments dict” 是一个包含 Web Crawler 类所需参数的字典。
Python 命令行界面模式
加载
deepsearcher load "your_local_path_or_url"# load into a specific collectiondeepsearcher load "your_local_path_or_url" --collection_name "your_collection_name" --collection_desc "your_collection_description"
示例:从本地文件加载
deepsearcher load "/path/to/your/local/file.pdf"# or more files at oncedeepsearcher load "/path/to/your/local/file1.pdf" "/path/to/your/local/file2.md"
查询
deepsearcher query "Write a report about xxx."
更多帮助信息
deepsearcher --help
若要获取有关特定子命令的更多帮助信息,可以使用 deepsearcher [subcommand] --help
。
deepsearcher load --helpdeepsearcher query --help
部署
配置模块 您可以通过修改 config.yaml 来配置所有参数,以使用默认模块设置您的系统。例如,在 YAML 文件的 llm
部分设置您的 OPENAI_API_KEY
。
启动服务
主脚本将以默认地址 localhost:8000
运行 FastAPI 服务。
$ python main.py
通过浏览器访问
您可以在浏览器中打开 url http://localhost:8000/docs 以访问该网络服务。点击“试一试”按钮,允许您填写参数并直接与 API 交互。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。