FLUX“官方版ControlNet”来了!景深轮廓更精准控制,共四款官方工具一齐上线

“最强绘图模型”FLUX深夜更新,一口气连发四款工具!

用官方的话说,这次的更新给FLUX“带来了更多的控制方式和可操作性”。

别看官方说得简单,实际效果可是要震撼得多。

只用一个相同的轮廓,FLUX就能变幻出各式各样不同风格的画作:

或者传一张图,不用提示词就能让人物做出各种不同的动作,同时保持角色一致:


这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述
此外,还可以对现有的图像进行扩展,不断延伸画面:

具体来说,此次FLUX一共发布了这四款创意工具:

  • 编辑工具fill,可以修改画面细节或扩展画面;

  • 轮廓控制工具Canny,类似ControlNet;

  • 景深控制工具Depth,类似ControlNet;

  • 变换工具Redux,可改变人物动作、画面视角/风格。

这些工具分为dev和pro两个版本,dev版的代码和模型权重均已开放下载,pro版也通过API提供。

而且支持创作者常用的ComfyUI,能够简单整合进绘画工作流。

有网友评论说,这是一件大事,因为BFL(FLUX开发团队)终于有了自己的ControlNet。

还有人表示,这些工具解锁了(AI绘图的)可操纵性,是创意绘图的game changer。

四款工具一齐上线

首先来看fill,它可以对画面中包括文字在内的任意细节进行编辑或修复,比如图像中人物的衣着,或者加入新的元素。

此外还支持outpainting,可以将图像扩展到原始画面之外。

测评结果上,FLUX的官方工具,和第三方FLUX工具Alimama Creative体现出了优势。

同时也战胜了之前来踢馆的Ideogram,对比SD 1.5的类似功能则更是优势明显。

以文字修改任务为例,测试中对下图“Beers”部分进行了圈选,并要求修改为“Spaghetti”。

可以看出,官方Fill工具效果最为自然,Ideogram也还不错,但仔细对比会发现FLUX的文字粗细更加接近画面中的其他文字。

第三方插件则并未匹配原始字体,至于SD 1.5那更是惨不忍睹。

再来看看非文字的效果,这项任务需要在图像指定的位置(左侧)加上模糊(blurry)的小猫照片。

下图中的顺序和前面一样,可以看到除了左上角的FLUX fill工具之外,都没有满足“模糊”这个要求。

单看的话画面,第三方插件和Ideogram也都还可以,不过第三方插件“画蛇添足”地给原图的第一个木块加上了两个点。

而SD 1.5,似乎在保持着一种稳定的抽象。

第二个工具Canny,相当于一个轮廓ControlNet,通过边缘检测来精准地控制图像转换过程中的结构。

这次对比的对象包括第三方工具InstantX,以及SD 1.5和SDXL,结果FLUX.1 Canny的成绩优势明显。

当然这轮测试是直接把提取好的轮廓给模型,难度相对于让模型自己提取有一点降低。

利用这样的一个轮廓,每个模型或工具需要生成6张不同的图片(每个prompt两张)。

下图中,第一行为Flux.1 Canny(Pro)的作品,第二行为InstantX,第三第四行分别是SD 1.5和SDXL。

从左到右六张图片的prompt依次是:

1&2:a robot made of gold(一个金子做的机器人)
3&4:a robot made of brown and white clay(一个用棕色和白色黏土做的机器人)
5&6:a white robot in front of a gray background(一个白色的机器人在灰色的背景前方)

对于“金子”的部分,FLUX.1 Canny第一次画出来的效果是质感最好的,而且FLUX.1 Canny质量稳定性保持得是比较好的。

单就这个任务而言,SD 1.5的作品再次成为了最显眼包的一组。

接下来是Depth,它和Canny一样都是类似ControlNet的存在,顾名思义控制的内容是景深。

这次没有再把SD拉过来,参与对比的是两款第三方插件,还有MidJourney。

在一项测试任务中,提取之后的景深关系是这样的:

下图中,第一行对应FLUX.1 Depth(Pro),第二、三行对应Jasper和Shakker两款第三方工具,最后一行对应MidJourney。

从左到右,提示词依次是:

1&2:mountain cabin, anime style(山间小屋,动漫风格)
3&4:1950’s aesthetics(上世纪50年代的美学)

这里就不一一点评细节了,但FLUX.1 Depth的作品是最忠实于控制条件中景深关系的一组,而且也不像MidJourney那样出现了画面割裂的情况。

最后是Redux,给定输入图像,可以让FLUX在其基础之上进行“重新设计”,变换出各种不同的图片。

图像的背景、角度、画风都可以调整,同时在变换过程中保持角色一致。

如果实在没灵感,也可以只把图丢给模型,不用输入提示词,让模型自行发挥帮你转换。

相比于SD 1.5和SDXL,领先优势十分明显。

比如这张图中有只小猫正抱着一条鱼奔跑,测试过程当中没有输入提示词。

每个模型各自生成了三张图,由上到下分别是FLUX.1 Redux(Pro)、SD 1.5和SDXL。

在FLUX作品中鱼和猫的长相都和原图保持了一致,在细节动作时做出了变化,而SD 1.5生成的图像里猫和鱼都已经完全变了样子。

到了SDXL这里,好家伙,不要说风格了,猫和鱼直接陷入了“量子纠缠”,在三张图中都没有同时出现。

总之对比一圈之后发现,FLUX这次上线的四款官方工具,不管是相对第三方工具还是相对于其他模型,都十分扛打。

四款工具都是支持pro和dev两个版本(其中Canny和Depth还分完整版和LoRA版),dev版本代码和模型权重都是开放下载,pro版则要通过BFL API来使用。

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### FluxControlNet 集成概述 Flux 是一种新兴的机器学习框架,以其高效性和灵活性著称[^4]。该框架不仅能够提供强大的计算能力,还支持多种插件扩展功能,其中就包括了ControlNet的支持。 #### ComfyUI FLUX ControlNet 工作流展示 具体来说,在ComfyUI FLUX ControlNet工作流中,通过集成ControlNet来增强输出生成的效果。此工作流程提供了两种主要类型的条件输入:基于深度的信息和基于Canny边缘检测的结果[^1]。这种设计使得模型可以根据不同的特征来进行精确的学习与预测。 #### 构建模块化的工作流环境 为了实现上述目标,构建了一个结构化的操作界面,它由几个关键部分组成: - 采样控制区允许调整参数以优化性能表现; - ControlNet 控制区则专注于特定任务导向的功能定制; - 最终图片生成保存区完成结果文件管理的任务[^2]。 这些组件同作用于整个数据流转过程之中,从而实现了高效的自动化流水线作业模式。 #### 应用实例——FLUX-Controlnet-Inpainting 阿里推出的 FLUX-Controlnet-Inpainting 插件进一步拓展了这一领域的能力边界。作为 ALI FLUX-dev 的一部分,这个工具可以有效地修复图像中的遮罩区域,并使其自然地融合到原始场景当中去。尽管现在仍处于alpha测试阶段,但已经展现出了良好的应用前景[^3]。 ```python from flux import load_model, process_image from controlnet import apply_controlnet def integrate_flux_and_controlnet(image_path, mask_area): # 加载预先训练好的Flux模型 model = load_model('path_to_pretrained_flux') # 处理传入的图像 processed_img = process_image(image_path) # 使用ControlNet进行特定任务(如修补) result = apply_controlnet(processed_img, mask_area=mask_area) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值