【人物多角度视图】 Openpose人物不同视图风格一致升级强化版,附姿态图

这是一个升级版人物多角度视图生成工作流,主要是去除了提示词反推,改为支持中文输入的自动翻译输入文本,主要是反推提示词对于生成人物不同视图往往过于复杂,耗费时间较长。然后是增加了骨架生成功能,可以上传图片,先生成Openopse骨架姿势图,再上传到controlnet 控制图层中,生成想要的人物姿态。

flux模型使用的是 Controlnet_InstantX-FLUX.1-dev-Controlnet-Union-Pro.safetensors cn控制模型。

输入提示词:lang:zh 一个美丽的亚洲女人,皮肤白皙,穿着黄色外套和黑色牛仔裤,大约 24 岁,马尾辫,


这份完整版的模型已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述
Controlnet_InstantX-FLUX.1-dev-Controlnet-Union-Pro:多控制模式的AI图像生成工具

Controlnet_InstantX-FLUX.1-dev-Controlnet-Union-Pro 是由 InstantX 团队和 Shakker Labs 联合推出的一款先进的 AI 图像生成模型。该模型专为 InstantX-FLUX.1 开发版设计,集成了多种控制模式,包括边缘检测(Canny)、瓦片(Tile)、深度图(Depth)、模糊(Blur)、人体姿态估计(Pose)、灰度图像(Gray)和低分辨率图像(LQ)。这些控制模式使得用户可以在生成图像时实现更精确的控制,从而满足不同场景下的需求。

边缘检测(Canny) :通过边缘检测技术,生成具有清晰边缘的图像,适用于需要突出物体轮廓的场景。

瓦片(Tile) :将图像分割成多个小块,每个小块可以独立生成,适用于需要局部细节增强的图像。

深度图(Depth) :基于深度信息生成图像,适用于需要模拟三维效果的场景。

模糊(Blur) :通过模糊处理,生成柔和或朦胧效果的图像,适用于需要艺术化处理的场景。

人体姿态估计(Pose) :根据输入的姿态图生成相应的图像,适用于需要精确人体姿态控制的场景。

灰度图像(Gray) :生成灰度图像,适用于需要黑白效果或简化视觉效果的场景。

低分辨率图像(LQ) :生成低分辨率图像,适用于需要快速生成大量图像的场景。

多控制模式集成:FLUX.1-dev-Controlnet-Union-Pro 支持多种控制模式的同时使用,用户可以根据需求灵活选择和组合不同的控制模式,实现更复杂的图像生成任务。

高性能和高效率:该模型在训练过程中使用了更多的数据和步骤,相比之前的版本更加专业和高效。它可以在短时间内生成高质量的图像,适用于需要快速迭代的项目。

灵活性和可扩展性:用户可以通过调整控制参数(如 control_mode 和 controlnet_conditioning_scale)来微调生成效果,满足不同场景的需求。

根据多项测试结果,FLUX.1-dev-Controlnet-Union-Pro 在准确率、召回率和资源消耗指标上表现出色。基准测试、压力测试和对比测试均显示该模型在多控制模式下具有优异的性能。

Controlnet_InstantX-FLUX.1-dev-Controlnet-Union-Pro 是一款功能强大且灵活的 AI 图像生成工具,适用于多种复杂场景。其多控制模式的设计不仅提高了生成图像的质量和效率,还为用户提供了更多的创作自由度。随着技术的不断进步,该模型的性能将进一步提升,为用户提供更加丰富的图像生成体验。

这份完整版的模型已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 Stable Diffusion 生成角色三视图 #### 准备工作 为了成功创建高质量的角色三视图,需先安装并配置好Stable Diffusion环境以及必要的插件。特别是ControlNet扩展对于姿态引导至关重要[^2]。 #### 控制网络设置 通过加载预训练好的`openpose`检测器到ControlNet模块内,能够有效捕捉人体骨骼结构特征,从而确保不同视角下的人物形态一致性[^1]。 #### 参数调整建议 当利用文字提示词时,推荐加入特定参数以优化输出效果: - `simple background, white background:1.3`: 创建简洁背景利于突出主体; - `(multiple views:1.2)` 和 `(three views of character:1.2)` : 明确指示希望获得多角度展示; - `front`, `side`, `back:1.2`: 分别强调所需的具体方位[^4]。 #### 执行过程概览 启动程序后,在界面中输入上述定制化指令集作为Prompt;随后选择合适的LoRA模型进一步微调细节表现力;最后点击“Generate”按钮等待成果呈现即可完成整个流程。 ```python from diffusers import StableDiffusionPipeline, ControlNetModel import torch controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet ).to("cuda") prompt = "(simple background, white background:1.3),(multiple views:1.2),Multiple views of the same character in the same outfit:1.3,(three views of character:1.2),(back:1.2),front,side" image = pipe(prompt=prompt).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值