现在各种各样的大模型新闻可谓是铺天盖地,我们被笼罩在这样的信息迷踪里,思维很容易被发散而不集中,最后难以形成聚焦的观点,稀里糊涂感觉这个也对,那个也不错。
本篇我们来梳理梳理:
观点一
客观数据表明,人工智能大模型的使用量增长、收入和利润率都不尽如人意。
-
根据红杉资本估计,2023年,各大模型研发公司在英伟达这里购买 GPU 等硬件成本高达 500 亿美元,结果收入只约 30 亿美元左右。
-
大模型各创业公司的估值已早高于他们应有的水平,而且低毛利率是不争的事实,云计算提供商正在削减投入。
-
部分大模型创业公司正面临解散,微软前首席执行官甚至表示知名 AI 大模型 StabilityAI 未来并不明朗。
(4.9日,OpenAI 投资的一家自动驾驶公司现已关闭)
-
GPTS 已逐渐被验证是彻底的失败,当人们的热情退却后,大家已经基本清楚这个“玩意”了,它是一个有趣的东西,但是并不能明显提高生产力,即使能提高生产力,也并不稳定,结果不总是能符合预期。
-
普通大众只知道 ChatGPT,绝大数人使用的是过时的 GPT3.5 版本,不愿意付费使用 GPT-4、Claude3 等更高版本。而在这群使用 GPT3.5 的人群中,一些人肆无忌惮的使用 AIGC 的内容去腐蚀互联网的内容创作,这正成为大问题!
以上这些是否意味着 AIGC 大模型的失败?也许是,但也许不是!
观点二
还有一些数据:
-
大模型仍然是当前新闻媒体的主要焦点,阅读量仍维持在一个比较高的水平。
-
大模型的创业公司虽然估值较高,但是回归合理值,也是一个好的现象。
-
真正利用 ChatGPT 提高生产效率的这群人主要是编程人员。
-
现在还有不断的大模型正在推出,比如 Anthropic 在三月初发布了 Claude 3,最近在 LMSys 聊天机器人领域首次超越了 GPT-4;今年夏天还将发布更多产品,其中可能包括 OpenAI 的 GPT-5、苹果的新 Siri、Meta 的 Llama 3、谷歌的 Gemini 1.5 Ultra 和 xAI 的 Grok 2。
-
AIGC 脚步并未停下,就在上周,Databricks 公开 DBRX 是迄今为止最好的开源模型;AI21 labs 的 Jamba 是最好的生产级 SSM 转换器(具有新颖的架构);OpenAI 的 Voice Engine 是文本转语音模型,可生成 15 秒钟音频的自定义逼真语音。
-
除此之外,底层科研仍在投入,微软和 OpenAI 计划在未来几年建造的价值 1000 亿美元的超级计算机基础设施项目;
所以,这一波 AIGC 大模型到底处在什么阶段?
一句话:大模型的炒作已经平息,但革命仍在继续。
在历史产业革命中,比如印刷机、电力、互联网都是这样发展的。比如在 2000 年,互联网公司崩盘,在线商务不景气,但是时隔多年,它再次形成革命。
生成式人工智能的发展也可能与此类似:早期的动荡夹杂着热情,随后是平淡,最后是复苏。
从当下有限的视角来看,我们可能根本无法证明或证伪生成式人工智能的革命性。或许,俗套一点来说:时间会给出答案。这个时间不会很久~
🔊说到这里,我们不难发现:成长与发展是主旋律 ~
但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。
这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
AIGC所有方向的学习路线思维导图
这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
AIGC工具库
AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
有需要的朋友,可以点击下方卡片免费领取!
精品AIGC学习书籍手册
书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。
AI绘画视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】