最优化学习(一)

增加了学习任务,算法最优化,根据老师推荐购买了《最优化:建模,算法与理论这本书》,接下来进行学习。

不知道应该怎样具体进行学习,目前的打算是遇到不会的就搞明白,后边学习模式是否需要改变再做打算。不懂的知识点会用块引用进行标注,代码应该会在pcharm中进行实现,如果需要再进行MATLAB的学习。

s.t.代表约束条件

在线性方程求解中,比如信号传输过程中,真正有用的解是所谓的“稀疏解”。

1.压缩感知:通过部分信息恢复全部信息的解决方案。

2.高斯分布:又称为正态分布,若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布

3.欠定方程组:方程个数小于未知量个数的方程组。

对于方程组Ra=y,R为n×m矩阵,且n<m。则方程组有无穷多组解,此时称方程组为欠定方程组。内点法和梯度投影法是目前解欠定方程组的常用方法。


2.1范数 

4.范数球:一定是凸集,且满足三角不等式

 

5.算子范数:由向量范数诱导出来,且都满足

这种也可以适用于相容性缩放,但要注意的是并不是所有的矩阵范数都与给定的向量范数相容。最常用到的是矩阵的2范数,即元素值的平方和开方。

6.最大奇异值:类似于矩阵特征值,在矩阵中也是从大到小排列

奇异值_Nelocage-CSDN博客_最大奇异值

7.核范数:给定矩阵A,核范数就是该矩阵所有的非零奇异值之和,r=rank(A)

范数一般用于衡量矩阵模的大小


2.2导数

推导一下二次上界,是关于定义(梯度利普希茨连续)的引理,有什么理解错的地方欢迎大家指正,本身也是学习的过程

首先看一下梯度利普希茨连续,给定可微函数f,若存在L>0,对任意x,y∈dom f 有:

                                       \left \|\bigtriangledown f(x)-\bigtriangledown f(y) \right \|\leq L\left \| x-y \right \|                                 (2.2.2)

则称f是梯度利普希茨连续的,相应利普希茨常数为L,有时也简记为梯度L-利普希茨连续或L-光滑

  梯度利普希茨连续表明\bigtriangledown f(x)的变化可以被自变量x的变化所控制,满足该性质的函数具有很多好的性质,一个重要的性质是具有二次上界。

  引理(二次上界)设可谓函数f(x)的定义域dom f = \mathbb{R} ^n,且为梯度L-利普希茨连续的,则函数f(x)有二次上界:

                        f(y) \leqslant f(x) + \bigtriangledown f(x)^T(y-x) + \frac{L}{2}\left \|y-x \right \|^2,\forall x,y \in dom f.          (2.2.3)

另附LaTeX的符号表 LaTeX常用数学符号表示方法 - 知乎

接下证明对于任意的x,y \ni \mathbb{R} ^n,构造辅助函数

                                   g(t) = f(x+t(y-x)),t \in [0,1]              (2.2.4)

通过观察可以发现g(0) = f(x),g(1) = f(y),以及

                                     g'(t) = \nabla f(x+t(y-x))^T(y-x)

这一步很显然是等式两边同时对t进行求导,左边是g'(t)右边见上式

由等式

                                                      g(1) - g(0) = \int_{0}^{1} g'(t)dt

以及g(0) = f(x),g(1) = f(y)可知:

                                          f(y) - f(x) - \nabla f(x)^T(y-x)\\= \int_{0}^{1}(g'(t)-g'(0))dt\\=\int_{0}^{1}(\nabla f(x)+t(y-x)-\nabla f(x))^T(y-x)dt

下一步用到了柯西不等式:|a^Tb| \leqslant ||a||_2||b||_2

                                              \leqslant \int_{0}^{1} \left \| \nabla f(x)+t(y-x)-\nabla f(x) \right \| \left \|y-x \right \|dt \\ \quad \leqslant \int_{0}^{1}L\left \| y-x \right \|^2tdt\\ \\ =\frac{L}{2}\left \| y-x \right \|^2

其中最后一行的不等式利用了(2.2.2)条件

这个引理实际上指的是f(x)可被一个二次函数上界所控制,即要求f(x)的增长速度不超过二次。实际上,该引理对f(x)定义域的要求可减弱为dom f是凸集(后边学到了再研究,还有很长一段路),此条件的作用是保证证明中的g(t)t \in [0,1]时是有定义的。

f是梯度利普希茨连续的,且有一个全局极小点x^*,以个重要的推论就是我们能够利用二次上界来估计f(x) - f(x^*)的大小,其中x可以是定义域中的任一点。

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值