AI大模型之Prompt工程:提示词框架简介(一)

1. APE (Action Purpose Expect) 提示词框架

1)框架介绍:将用户的请求分解为行动、目的和期望三个主要部分,使交互更明确和高效。
2)使用场景:适用于需要明确行动步骤、目的和期望结果的业务场景,如营销活动规划、项目管理等。
3)关键结构字段说明:

行动 (Action): 计划并发布一系列的社交媒体广告,宣传我们的最新产品。
目的 (Purpose): 通过吸引社交媒体用户的注意,提高产品的在线销售和品牌知名度。
期望 (Expectation): 在接下来的一个月中,通过社交媒体广告,在线销售增加 30%,并且我们的品牌在社交媒体上的关注度提高 20%。

4)关键结构字段:

  • #行动 (Action)
  • #目的 (Purpose)
  • #期望 (Expectation)

5)写作示例:

  • 行动 (Action):设计并发布新产品的营销活动。
  • 目的 (Purpose):提高品牌知名度和市场占有率。
  • 期望 (Expectation):在产品发布后的三个月内,实现销售额增长20%,并在社交媒体上获得至少10万次的提及。
  • 案例:一家科技公司计划推出新产品。

2. BROKE 提示词框架

1)框架介绍:融合了 OKR 方法论,通过大模型设计提示,提高工作效率和质量。
2)使用场景:适合需要详细背景信息、角色设定和关键结果衡量的复杂任务,如企业战略规划、产品开发等。
3)关键结构字段说明:

  • 背景 (Background): 提供足够的背景信息,使大模型能够理解问题的上下文。
  • 角色 (Role): 设定特定的角色,让大模型能够根据该角色来生成响应。
  • 目标 (Objectives): 明确任务目标,让大模型清楚知道需要实现什么。
  • 关键结果 (Key Results): 定义关键的、可衡量的结果,以便让大模型知道如何衡量目标的完成情况。
  • 演变 (Evolve): 通过试验和调整来测试结果,并根据需要进行优化。

4)关键结构字段:

  • #背景 (Background)
  • #角色 (Role)
  • #目标 (Objectives)
  • #关键结果 (Key Results)
  • #演变 (Evolve)

5)写作示例:

  • 背景 (Background):团队目前面临代码维护困难和频繁的bug修复。
  • 角色 (Role):团队成员需要扮演质量保证专家。
  • 目标 (Objectives):减少代码缺陷,提高开发效率。
  • 关键结果 (Key Results):在下一个开发周期内,缺陷率降低50%,代码审查时间减少30%。
  • 案例:一个软件开发团队需要提高代码质量。

3. CHAT 提示词框架

1)框架介绍: 集中于角色、背景、目标和任务四个核心部分,为用户与大模型的深度交互提供全面指导。
2)使用场景: 适合需要角色扮演和详细背景信息的交互,如客户服务、教育辅导等。
3)关键结构字段:

  • #角色 (Character)
  • #背景 (History)
  • #目标 (Ambition)
  • #任务 (Task)

4)关键结构字段说明:

  • 角色 (Character): 定义 Chat大模型应扮演的角色或角色。
  • 背景 (History): 提供与当前问题相关的历史信息和背景知识。
  • 目标 (Ambition): 描述用户希望从与大模型的交互中实现的长期或短期目标。
  • 任务 (Task): 明确了用户希望大模型执行的具体任务或行动。

5)写作示例:

  • 角色 (Character):历史老师。
  • 背景 (History):工业革命的历史背景和影响。
  • 目标 (Ambition):让学生理解工业革命的重要性。
  • 任务 (Task):设计一堂互动性强、内容丰富的课程。
  • 案例:一位历史老师需要准备一堂关于工业革命的课程。

文章最后

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!

一、大模型全套的学习路线

L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署

在这里插入图片描述

达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。

有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

### AI大模型Prompt提示词的作用 在人工智能领域,特别是针对大型预训练模型(LLMs),如GPT系列、BERT等,Prompt提示词起着至关重要的作用。这些提示词作为输入给定的部分,指导模型如何响应特定的任务请求[^2]。具体来说: - **指引行为**:通过精心设计的提示语句,可以有效地引导模型执行预期的操作或生成所需的结果。 - **提升效率**:良好的提示词可以帮助减少不必要的计算资源消耗,提高任务完成的速度和准确性。 ```python prompt = "Translate the following English text to French: 'Hello world'" print(prompt) ``` 这段简单的Python代码展示了如何构建个用于翻译任务的基础提示词。它清晰地说明了背景——即将英文转换成法文,并明确了待处理的具体内容[^3]。 ### 设计有效的Prompt提示词的方法 为了使提示词更加有效,在设计过程中应当考虑以下几个方面: #### 结构化的表达形式 个好的提示词应该具备四个主要组成部分: 1. **概述** - 描述当前情境以及目标行动的大致框架; - 明确指出参与者身份(即谁是用户,谁扮演AI助手的角色)。 2. **过程描述** - 阐述所期望的功能实现路径; - 列举遵循的原则及操作步骤。 3. **依赖关系** - 清晰界定所需的外部条件或内部知识库; - 注明涉及的数据源或其他辅助材料。 4. **控制参数设定** - 对于输出质量有特殊需求时可加入此部分; - 包含正面导向的要求也允许设置负面约束以排除不希望看到的情况发生。 例如,当创建个用于图像识别的应用程序时,可以通过如下方式组织提示词:“作为个专业的摄影师,请帮我分析这张照片中的主体特征并给出拍摄建议。”这里既包含了角色定位又隐含了具体的任务要求[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值