调用通义千问大模型Function Calling实现实时天气查询

OpenAI 在它的多个版本的模型里提供了一个非常有用的功能叫 Function Calling,就是你传递一些方法的信息给到大模型,大模型根据用户的提问选择合适的方法Function,然后输出给你,你再来决定是否执行。

之所以需要Function Calling,通俗来讲就是大模型不具备实时性。因为模型是基于之前的数据训练出来的。而 Function Calling 具备实时性的优势,比如调用第三方API、或者 Database 来获取实时数据。这样结合2者的优势就能给到用户最正确最合理的反馈结果。

Function Calling 流程

实现 Function Calling 需要以下几步:

  1. 预定义需要调用的Function函数

  2. 将定义好的Function以及需要的Parameter传入大模型

  3. 解析大模型返回结果,调用相应的Function获取实时结果

  4. 将Function返回的结果重新传给大模型,返回统一的NLG结果

具体的流程如下图所示:

在这里插入图片描述

接下来我们用查询实时天气为例,将这4步依次完成。

1. 定义获取实时天气Function

首先需要查询实时天气的接口API,我使用的是免费的 心知天气API ,返回的JSON合适如下:

{
    'results': [
            {
                'location': {
                'id': 'WTW3SJ5ZBJUY',
                'name': '上海',
                'country': 'CN',
                'path': '上海,上海,中国',
                'timezone': 'Asia/Shanghai',
                'timezone_offset': '+08:00'
            },
            'now': {
                 'text': '多云',
                 'code': '4',
                 'temperature': '22'
             }
         }
    ]
}

可以看出需要解析出 now 字段中的 texttemperature 值,具体实现代码如下:

import json
import requests

def get_current_weather(location):
    url = "https://api.seniverse.com/v3/weather/now.json?key=你的心知天气API Key&location=" + location + "&language=zh-Hans&unit=c"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        weather = data['results'][0]['now']['text']
        temp = data['results'][0]['now']['temperature']
        return json.dumps({"location": location, "weather": weather, "temperature": temp})
    else:
        return json.dumps({"location": location, "error": "获取实时天气数据失败!"})

上述代码中的key需要使用你自己申请的API Key。

2. 将Function传入大模型

2.1 声明大模型 function list

功能函数Function定义好之后,就需要通过function list将其传给大模型。function list 的具体格式根据你所选择的大模型的不同,可能会有所差异。具体需要按照各自大模型的官方文档来集成。这篇文章我使用的是通义千问大模型,格式如下:

functions = [
    # 获取指定城市的天气
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "当你想查询指定城市的天气时非常有用。",
            "parameters": {  # 查询天气时需要提供位置,因此参数设置为location
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "城市或县区,比如北京市、杭州市、余杭区等。"
                    }
                }
            },
            "required": [
                "location"
            ]
        }
    }
]

上述代码中我们定义了一个 functions 数组,在这个数组中有一个结构体 type类型为 function。然后在这个 function 中有2项内容很重要:name 和 description。

name 代表函数Function的名字;description 是告诉大模型什么时候需要返回需要调用当前function的结果。

另外,因为我们定义的 get_current_weather 函数需要传入参数 location,所以在上述代码中我们还需要声明一下 parameters。这样大模型就可以根据上下文返回给调用方合理的参数。

2.2 声明大模型接口调用的函数

然后调用相应大模型的接口,传入上述格式代码。根据通义千问官方文档具体传入方式如下:

import dashscope
from dashscope import Generation
import json
import requests
# 调用通义千问接口
def query_from_qwen(messages):
    response = Generation.call(
        api_key="你的通义千问API Key",
        model='qwen-plus',
        messages=messages,
        tools=functions,
        seed=random.randint(1, 10000),  # 设置随机数种子seed,如果没有设置,则随机数种子默认为1234
        result_format='message'  # 将输出设置为message形式
    )
    return response
2.3 构建messages执行query_from_qwen

代码如下:

# 模拟用户输入:青岛天气
messages = [
    {"content": "青岛天气", "role": "user"}
]
# 执行query_from_qwen,打印结果
llm_response = query_from_qwen(messages)
print(llm_response)

大模型返回结果

在这里插入图片描述

上图中可以看出,大模型返回了 tool_calls 字段。说明针对用户输入"青岛天气",已经正确理解出需要调用 get_current_weather function,并且正确提取出参数是 青岛市

3. 解析大模型结果调用Function

接下来就是解析上图中的 tool_calls 信息,并手动调用 get_current_weather 函数。

def parse_llm_response(llm_response):
    assistant_output = llm_response.output.choices[0].message
    if 'tool_calls' not in assistant_output:  # 如果模型判断无需调用工具,则将assistant的回复直接打印出来,无需进行模型的第二轮调用
        print(f"最终答案:{assistant_output.content}")
        return
    # 如果模型选择的工具是get_current_weather
    elif assistant_output.tool_calls[0]['function']['name'] == 'get_current_weather':
        tool_info = {"name": "get_current_weather", "role": "tool"}
        location = json.loads(assistant_output.tool_calls[0]['function']['arguments'])['location']
        tool_info['content'] = get_current_weather(location)
    return tool_info

get_current_weather 函数返回的数据包装到 tool_info 中,tool_info 结果如下:

{
  "name": "get_current_weather",
  "role": "tool",
  "content": {
    "location": "青岛",
    "weather": "多云",
    "temperature": "12"
}

最后一步就是将此 tool_info 重新返回给大模型,并返回最终结果。

4. 大模型返回最终NLG结果

将第 3 步返回的 tool_info 信息重新添加到 messages 中,并重新调用 query_from_qwen

messages.append(tool_info)
llm_final_response = query_from_qwen(messages)
print(f"\n大模型最终输出信息:{llm_final_response}\n")

最终打印结果如下:

在这里插入图片描述

最终大模型根据上下文理解以及传入的天气信息,返回了最合适的NLG结果。只需要将output中的content值解析出来并反馈给用户即可。

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 如何在云服务器上使用通义API进行调用 #### 1. 环境准备 确保已经完成阿里云账号注册以及获取到API访凭证。这一步骤涉及前往阿里云官网,注册并登录阿里云账号,在阿里云管理控制台中找到“通义”相关产品页面并订阅服务[^1]。 #### 2. 配置云服务器环境 安装必要的软件包来支持Python脚本运行,比如通过命令行工具更新系统库和安装pip(如果尚未安装),以便后续可以方便地安装其他依赖项。 对于Ubuntu/Debian系列Linux发行版: ```bash sudo apt-get update && sudo apt-get install python3-pip -y ``` 对于CentOS/RHEL系列Linux发行版: ```bash sudo yum install epel-release -y && sudo yum install python3-pip -y ``` #### 3. 安装所需Python库 利用pip安装requests库用于发起HTTP请求给通义API接口。 ```bash pip3 install requests ``` #### 4. 编写Python代码实现API调用 编写一段简单的Python程序来进行实际的API调用操作。这里提供了一个基本的例子: ```python import json import requests def call_qwen_api(api_key, api_secret, prompt_text): url = "https://api.qwen.com/v1/chat/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}:{api_secret}' } payload = { "messages": [ {"role": "user", "content": prompt_text}, ] } response = requests.post(url=url, data=json.dumps(payload), headers=headers) if response.status_code == 200: result = response.json() return result['choices'][0]['message']['content'] else: raise Exception(f"Error occurred while calling Qwen API: {response.text}") if __name__ == "__main__": # Replace these with your actual credentials from Aliyun Console. access_key_id = "<Your Access Key ID>" access_key_secret = "<Your Access Key Secret>" user_input = input("Enter text to send as a message:") reply_message = call_qwen_api(access_key_id, access_key_secret, user_input) print(f"Received Response:\n{reply_message}") ``` 这段代码展示了如何构建一个POST请求发送至通义API,并处理返回的数据以提取有用的回复信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值