判断是不是道路
用监督模式识别:先采集道路数据,根据数据找分类器,得到分类器参数;训练完将道路图片输入分类器就能判断是不是道路。
用非监督模式识别:收集包含各种地物的图像数据,不对其进行道路标记。这些图像可能包含道路、建筑物、植被等。从图像中提取特征,如颜色直方图、纹理特征、形状信息等,使用聚类算法(如K均值聚类)对提取的特征进行聚类,将图像区域分组成不同的类别。每个聚类对应于图像中的一个地物类型,但此时我们不知道哪个类别对应于道路。根据分析结果,选择可能对应于道路的聚类。这可能需要领域知识的辅助,例如人为地选择与道路特征相符的聚类。对被选择为道路的区域进行后处理,以改善结果的连续性和准确性,可能包括区域合并、去除小面积区域等。虽然没有监督的标签,但可以通过一些内部评估指标(如聚类内部紧密度和聚类间隔)来评估模型对道路的识别性能。
作业题中人脸识别的思路:
-
加载数据集:
- 通过设定
data_folder
变量,指定数据集的路径,这里是 ORL 人脸数据集。 - 调用
load_ORL_dataset
函数加载数据,将数据集划分为训练集和测试集。
- 通过设定
-
数据预处理:
- 计算训练数据的平均脸。
- 将平均脸从训练数据和测试数据中减去,以去除图像中的整体亮度变化。
-
PCA 主成分分析:
- 计算训练数据的协方差矩阵。
- 对协方差矩阵进行特征值分解,得到特征向量和特征值。
- 对特征向量按照对应特征值的大小进行降序排序。
-
选择主成分:
- 计算每个主成分对总能量的贡献。
- 确定保留 90% 能量所需的主成分数量。
-
投影数据到主成分空间:
- 选择确定数量的主成分。
- 使用这些主成分将训练数据和测试数据投影到新的低维空间。
-
使用 k-NN 进行识别:
- 使用 k-最近邻算法比较测试数据在主成分空间中的投影与训练数据的投影。
- 根据最接近的训练样本的标签进行识别。
-
计算准确率:
- 比较预测标签和实际标签,计算识别准确率。
-
显示错误分类的人脸:
- 在测试集中找到被错误分类的样本。
- 将这些样本的人脸图像显示出来,以便分析识别错误的原因。