模式识别分析题

文章探讨了道路识别采用的监督和非监督模式,涉及数据采集、特征提取、分类器训练以及人脸识别中的ORL数据集处理,包括PCA降维和k-NN识别技术。还提到通过内部评估和错误分析来优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断是不是道路

用监督模式识别:先采集道路数据,根据数据找分类器,得到分类器参数;训练完将道路图片输入分类器就能判断是不是道路。

用非监督模式识别:收集包含各种地物的图像数据,不对其进行道路标记。这些图像可能包含道路、建筑物、植被等。从图像中提取特征,如颜色直方图、纹理特征、形状信息等,使用聚类算法(如K均值聚类)对提取的特征进行聚类将图像区域分组成不同的类别。每个聚类对应于图像中的一个地物类型,但此时我们不知道哪个类别对应于道路。根据分析结果,选择可能对应于道路的聚类。这可能需要领域知识的辅助,例如人为地选择与道路特征相符的聚类。对被选择为道路的区域进行后处理,以改善结果的连续性和准确性,可能包括区域合并、去除小面积区域等。虽然没有监督的标签,但可以通过一些内部评估指标(如聚类内部紧密度和聚类间隔)来评估模型对道路的识别性能。

作业题中人脸识别的思路:

  1. 加载数据集:

    • 通过设定 data_folder 变量,指定数据集的路径,这里是 ORL 人脸数据集。
    • 调用 load_ORL_dataset 函数加载数据,将数据集划分为训练集和测试集。
  2. 数据预处理:

    • 计算训练数据的平均脸。
    • 将平均脸从训练数据和测试数据中减去,以去除图像中的整体亮度变化。
  3. PCA 主成分分析:

    • 计算训练数据的协方差矩阵。
    • 对协方差矩阵进行特征值分解,得到特征向量和特征值。
    • 对特征向量按照对应特征值的大小进行降序排序。
  4. 选择主成分:

    • 计算每个主成分对总能量的贡献。
    • 确定保留 90% 能量所需的主成分数量。
  5. 投影数据到主成分空间:

    • 选择确定数量的主成分。
    • 使用这些主成分将训练数据和测试数据投影到新的低维空间。
  6. 使用 k-NN 进行识别:

    • 使用 k-最近邻算法比较测试数据在主成分空间中的投影与训练数据的投影。
    • 根据最接近的训练样本的标签进行识别。
  7. 计算准确率:

    • 比较预测标签和实际标签,计算识别准确率。
  8. 显示错误分类的人脸:

    • 在测试集中找到被错误分类的样本。
    • 将这些样本的人脸图像显示出来,以便分析识别错误的原因。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值