一、概论
1、简述模式的概念和它的直观特性,解释什么是模式识别,同时绘出模式识别系统的组成框图,并说明各部分的主要功能特性。
对于存在于时间和空间中,可观察的物体,如果我们可以区分它们是否相同或相似,都可以称之为“模式”(或“模式类”)。
模式所指的不是事物本身,而是从事物中获得的信息。因此,模式常常表现为具有时间和空间分布的信息。
模式的直观特性包括:可观察性,可区分性,相似性。
模式识别就是对模式的区分和认识,把对象根据其特征归到若干类别中的适当一类。
模式识别系统的组成框图如下图所示。一个模式识别系统通常包括:原始数据获取与预处理、特征提取与选择、分类或聚类、后处理四个步骤。
监督模式识别过程可归纳为五个基本步骤:分析问题、原始特征获取、特征提取与选择、分类器设计、分类决策。
非监督模式识别过程可归纳为五个基本步骤:分析问题、原始特征获取、特征提取与选择、聚类分析、结果解释。
每部分说明略。
2、简述模式识别系统中模式处理的完整过程,和一个分类器的设计过程。
模式处理的完整过程可归纳为:数据/信息获取与预处理、特征提取与选择、分类或聚类、后处理四个步骤。
在统计决策中,分类器设计的过程包括:样本(类条件)概率密度形式假定、参数或非参数密度估计、确定准则函数、确定决策规则。
在基于样本直接设计的分类器中,分类器设计过程包括:确定判别函数类型(线性、二次、决策树、神经网络等)、确定学习目标(准则函数)、确定优化算法,在训练数据上学习分类器、在测试数据上评价分类器、解释分析。
3、给出机器学习问题的形式化表示,并解释学习机器的推广能力。
(1)机器学习的形式化表示
已知变量 y 与输入
机器学习就是根据 n 个独立同分布的观测样本
其中 F(x,y) 表示所有可能出现的输入 x 与输出
f(x,ω) 被称为预测函数集, ω∈Ω 为函数的广义参数,故 f(x,ω) 可以表示任意函数集。
L(y,f(x,ω)) 是使用 f(x,ω) 对 y 进行预测而造成的损失。
简而言之,机器学习,就是在一组设定的函数集中寻找使期望风险最小的最优函数。
(2)学习机器的推广能力
模式识别是一种基于数据的机器学习,学习的目的不仅是要对训练样本正确分类,而是要能够对所有可能样本都正确分类,这种能力叫做推广能力。
4、区别于基于模型的模式识别方法(统计决策原理),基于数据的模式识别方法直接从样本设计分类器。从样本直接设计分类器,需要确定哪些基本要素?
需要确定三个基本要素:① 判别函数类型(函数集),② 学习目标(准则函数),③ 优化算法。
5、给定一组有类别标号(
M
类)的样本 x1,⋯,xN (xi∈Rd) 。现有两种特征提取方法 F1 和 F2 ,和两种分类方法 C1 和 C2 。请设计一个实验方案,分别比较特征提取方法和分类方法的性能。写出详细实验过程。
采用 5-fold 交叉验证来评估
二、统计决策方法
1、简述多分类问题的最小错误率贝叶斯决策过程,并给出相应的最小分类错误率。
2、阐述最小风险贝叶斯决策原理和决策步骤,说明在什么情况下最小风险决策等价于最小错误率决策,并证明之。
(1)决策原理
最小风险贝叶斯决策的目标是,针对决策规则 α(x) ,最小化期望风险:
minαR(α)=∫R(α|x)p(x)dx .
由于 R(α|x) 和 p(x) 非负,且 p(x) 已知,与 α 无关,因而最小风险贝叶斯决策就是:
若 R(αi|x)=minj=1,⋯,kR(αj|x) ,则 α=αi .
其中 R(αi|x)=E[λij|x]=∑cj=1P(ωj|x), i=1,⋯,k , λij=λ(αi,ωj) 表示实际为 ωj 的向量决策为 αi 的损失,可从事先定义的决策表查得.
(2)决策步骤
① 计算后验概率: P(ωj|x)=p(x|ωj)P(ωj)∑ci=1p(x|ωi)P(ωi) .
② 利用决策表,计算条件风险: R(αi|x)=∑cj=1λijP(ωj|x) .
③ 决策: α=argminiR(αi|x) .
(3)等价关系
当 λii=0 且 λij=C (i≠j) ,其中 C 为某一常数时,最小风险贝叶斯决策等价于最小错误率贝叶斯决策。
证明:
满足上述条件时,条件风险
则决策规则 α=argminiR(αi|x) 等价于:
α=argmini∑j≠iCP(ωj|x)=argminiCP(e|x)=argmaxiP(ωi|x) .
因此,最小风险贝叶斯决策等价于最小错误率贝叶斯决策。
3、简述 Neyman-Pearson 决策原理。
Neyman-Pearson 决策原理是希望在固定一类错误率时,使另一类错误率尽可能小。
记 P1(e)=∫R2p(x|ω1)dx 和 P2(e)=∫R1p(x|ω2)dx 分别表示第一类错误率(假阴性率)和第二类错误率(假阳性率),则上述要求可表述为:
minP1(e)
s.t.P2(e)−ϵ0=0 .
用拉格朗日乘子法,得:
γ=∑R2p(x|ω1)dx+λ[∫R1p(x|ω2)dx−ϵ0]=(1−λϵ0)+∫R1[λp(x|ω2)−p(x|ω1)]dx .
分别对 λ 和决策边界 t 求导,可得:
①
要使 γ 最小,应选择 R1 使积分项内全为负值(否则可划出非负区域使之更小)。因此决策规则是:
若 l(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} ### \lambda,则 x∈ω1 ,否则 x∈ω2 .
(通常 λ 很难求得封闭解,需要用数值方法求解)
4、给出假阳性率、假阴性率、灵敏度 Sn (sensitivity)、特异度 Sp (specificity)、第一类错误率 α 、第二类错误率 β 、漏报、误报的关系,并给出相应的公式。
假阳性率就是假阳性样本占总阴性样本的比例。
假阴性率就是假阴性样本占总阳性样本的比例。
有:
α = 假阳性率 = 第一类错误率 = 误报率 = FPFP+TN = P1(e) = ∫R2p(x|ω1)dx .
β = 假阴性率 = 第二类错误率 = 漏报率 = FNFN+TP = P2(e) = ∫R1p(x|ω2)dx .
其中 ω1,ω2 分别表示阴性和阳性两个类别。
5、ROC 的全称是什么?ROC 曲线的横轴和纵轴各是什么?如何根据 ROC 曲线衡量一个方法的性能?给出 ROC 曲线的绘制步骤。
ROC 全称是 Receiver Operating Characteristic。
ROC 曲线的横轴是假阳性率,纵轴是假阴性率。
可以根据 ROC 曲线的曲线下面积 AUC (Area Under Curve) 来衡量一个方法的性能。
对于统计决策方法,每确定一个似然比阈值就决定了决策的真、假阳性率。因此ROC 曲线绘制步骤为:
① 在 [0,1] 上均匀采样 N 个点;
② 以每个点的值作为似然比阈值,根据公式
③ 把这些点连接起来得到 ROC 曲线。
对于基于样本直接设计分类器的方法,ROC 曲线绘制步骤类似。只需将似然比阈值改成归一化后的分类器得分阈值,把两类错误率的计算公式改成 FPFP+TN 和 FNFN+TP 即可。
6、设 p(x|ωi)∼N(μi,Σi), i=1,⋯,c ,给出各类别的判别函数和决策面方程并计算错误率。同时说明在各类别协方差矩阵相等和不等的情况下,决策面各是什么形态。
7、疾病检查, ω1 代表正常人, ω2 代表患病者。假设先验概率 P(ω1)=0.9 , P(ω2)=0.1 。现有一被检查者,观察值为 x ,查得
p(x|ω1)=0.2
, p(x|ω2)=0.4 ,同时已知风险损失函数为 ⎡⎣⎢⎢λ11λ21λ12λ22⎤⎦⎥⎥=⎡⎣⎢⎢0160⎤⎦⎥⎥ . 分别基于最小错误率和最小贝叶斯进行决策,并给出计算过程。
8、设 d 维随机变量
x
各分量间相互独立,且 d 足够大,试基于中心极限定理估计贝叶斯错误率。
9、什么是统计决策?比较基于模型的方法和基于数据的方法。
统计决策的基本原理就是根据各类特征的概率模型来估算后验概率,通过比较后验概率进行决策。而通过贝叶斯公式,后验概率的比较可以转化为类条件概率密度的比较。
基于模型的方法是从模型的角度出发,把模式识别问题转化成了概率模型估计的问题。如果能够很好地建立和估计问题的概率模型,那么相应的分类决策问题就能被很好地解决。
基于数据的方法不依赖样本概率分布的假设,而直接从训练样本出发训练分类器。
三、概率密度函数的估计
1、比较四种方法:参数统计方法、非参数统计方法、前馈神经网络、支持向量机各有什么优缺点?
(1)参数统计方法
(2)非参数统计方法
优点:假设条件少,运算简单,方法直观容易理解,能够适应名义尺度和顺序尺度等对象。
缺点:方法简单,检验功效差,计算和存储要求高。
(3)前馈神经网络
优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。特别重要的是,神经网络可以用来提取特征,这是许多其他机器学习方法所不具备的能力(例如使用autoencoder,不标注语料的情况下,可以得到原始数据的降维表示)。
缺点:需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。
(4)支持向量机
优点:能解决小样本问题,能处理非线性问题,无局部极小值问题,能很好地处理高维数据,泛化能力强。
缺点:对核函数的高维映射解释能力不强(尤其是径向基函数),对缺失数据敏感,难以处理大规模数据,难以解决多分类问题(常用一对多、一对一、SVM 决策树),对非线性问题没有通用解决方案(有时候很难找到一个合适的核函数)。
注:缺失数据?
这里说的缺失数据是指缺失某些特征数据,向量数据不完整。SVM没有处理缺失值的策略(决策树有)。而SVM希望样本在特征空间中线性可分,所以特征空间的好坏对SVM的性能很重要。缺失特征数据将影响训练结果的好坏。
2、最大似然估计的基本假设是什么?给出最大似然估计的计算步骤。
3、简述贝叶斯估计的原理和步骤。
(1)原理
贝叶斯估计把参数估计看成贝叶斯决策问题,要决策的是参数的取值,且是在连续空间里做决策。
目标函数是最小化给定样本集
θ∗=argminθ̂ R(θ̂ |)=∫Θλ(θ̂ ,θ)p(θ|)dθ .
取 λ(θ̂ ,θ