单变量微积分笔记——无穷级数,泰勒展开及欧拉公式的证明

0. 写在前面

今天总算完整听完了MIT 18.01单变量微积分的课程,课程最后一部分主要讨论了处理无穷的方法。我对于级数这一部分印象极为深刻,突然明白欧拉公式是怎么证明的了,所以想写一篇博客整理一下思绪,但一切都得从概念上讲起。

1. 一些关于级数的基本概念:

1.1 什么是无穷级数

无穷级数是指无穷多个以既定方式排列的数字的总和。用数学语言来表示的话,设数列为 a 1 , a 2 , a 3 , . . . , a n , . . . , a_1,a_2,a_3,...,a_n, ..., a1,a2,a3,...,an,...,,其部分和定义为: S n = ∑ 1 n a n = a 1 + a 2 + a 3 + . . . + a n S_n=\sum_{1}^{n}a_n=a_1+a_2+a_3+... +a_n Sn=1nan=a1+a2+a3+...+an
无穷级数则表示为:
∑ n = 1 ∞ a n = lim ⁡ n → ∞ S n = lim ⁡ n → ∞ ∑ n = 1 n a n \sum_{n=1}^{\infty}a_n=\lim_{n\to \infty}S_n=\lim_{n\to \infty}\sum_{n=1}^{n}a_n n=1an=nlimSn=nlimn=1nan

1.2 级数和积分的联系

个人理解

通过之前对积分的学习,再结合本科这四年学习中的经验,我个人认为级数是从离散的角度(或者说是更加实际的角度)去理解一个连续函数,这种方法也非常适合设计一些计算机程序去估计函数值,导数等等(计算机最喜欢处理重复性的问题)。而对于积分而言,它更像是一种理想化的,更适合人类本身运算的方法,但是遇到了更困难的超越函数之类,在不能通过巧妙的换元法等技巧求解的时候,积分这种方法就不如离散的级数方法有效了。以上只是比较泛泛的对于积分和级数的理解,以下的内容比较具体。

个人认为级数可以说是黎曼和(Riemann Sum)的一种特殊表达形式。对于定积分而言,例如上黎曼和(选择函数左侧数值作为矩形的高度,下黎曼和则选择右侧数值)的一般形式会将区间 x ∈ [ a , b ] x\in[a,b] x[a,b] 分成 N N N份,间隔 Δ n = ( b − a ) / N \Delta n=(b-a)/N Δn=(ba)/N得到:
S = ∑ k = 1 N − 1 f ( a + ( k − 1 ) Δ n ) ⋅ ( a + ( k − 1 ) Δ n ) S=\sum_{k=1}^{N-1}f(a+(k-1)\Delta n)\cdot(a+(k-1)\Delta n) S=k=1N1f(a+(k1)Δn)(a+(k1)Δn)
而级数则是在区间 x ∈ [ x 0 , ∞ ] x\in[x_0,\infty] x[x0,] 上中间间隔为1的黎曼和(通过上下黎曼和也可以估计级数部分和的大小):
S i n f = ∑ 1 ∞ f ( x ) ⋅ 1 S_{inf}=\sum_{1}^{\infty}f(x)\cdot1 Sinf=1f(x)1

级数和积分的对比

在MIT 18.01中,Jerison教授对比了级数和积分,并给出了一个定理
(参考讲义session 95b)
如果 f ( x ) f(x) f(x) 是递减函数且在区间 [ 1 , ∞ ] [1,\infty] [1,] f ( x ) > 0 f(x)>0 f(x)>0,那么级数 ∑ 1 ∞ f ( x ) \sum_1^\infty f(x) 1f(x) 和积分 ∫ 1 ∞ f ( x ) d x \int_1^\infty f(x)dx 1f(x)dx 同时收敛或发散,并且满足:
∑ 1 ∞ f ( x ) − ∫ 1 ∞ f ( x ) d x &lt; f ( 1 ) \sum_1^\infty f(x)-\int_1^\infty f(x)dx&lt;f(1) 1f(x)1f(x)dx<f(1)
注意!求解无穷级数要比求解无穷积分(瑕积分Improper Integral)要困难得多。

1.3 级数的收敛

级数的收敛性是指 lim ⁡ x → ∞ S n = C \lim_{x\to\infty}S_n=C limxSn=C(常数),这里 S n S_n Sn 是数列的n项和;反之,级数发散(diverge)。涉及到幂级数时还需定义收敛半径(见 2.1

1.4 级数举例

a. 几何级数(Geometric Series)

几何级数的表达式
∑ 0 ∞ a n = 1 + a + a 2 + a 3 + . . . = 1 1 − a ( ∣ a ∣ &lt; 1 ) \sum_0^\infty a^n=1+a+a^2+a^3+...=\frac{1}{1-a}\\ (|a|&lt;1) 0an=1+a+a2+a3+...=1a1(a<1)
需注意,当 ∣ a ∣ ≥ 1 |a|\geq1 a1时,几何级数不收敛。

b. 调和级数(Harmonic Series)

调和级数是p级数的一种特殊情况,其表达式为
∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + . . . + 1 n + . . . \sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}+... n=1n1=1+21+31+...+n1+...

调和级数是发散的

c. p级数

p级数的表达式为:
∑ n = 1 ∞ 1 n p = 1 + 1 n 2 + 1 n 3 + . . . 1 n p + . . . \sum_{n=1}^{\infty}\frac{1}{n^p}=1+\frac{1}{n^2}+\frac{1}{n^3}+...\frac{1}{n^p}+... n=1np1=1+n21+n31+...np1+...
∣ p ∣ ≥ 1 |p|\geq1 p1时,级数收敛( p = 1 p=1 p=1时为调和级数);当 ∣ p ∣ &lt; 1 |p|&lt;1 p<1时,级数发散。

d. 幂级数(Power Series)及其收敛半径(Radius of Convergence)

幂级数的表达式为:
∑ 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum_0^\infty a_nx^n=a_0+a_1x+a_2x^2+...+ a_nx^n+... 0anxn=a0+a1x+a2x2+...+anxn+...
收敛半径
存在一个数 R ( 0 ≤ R ≤ ∞ ) R(0\leq R\leq\infty) R(0R) 使得 ∣ x ∣ &lt; R |x|&lt;R x<R 时,级数 ∑ 0 ∞ a n x n \sum_0^\infty a_nx^n 0anxn收敛; ∣ x ∣ &gt; R |x|&gt;R x>R 时,级数 ∑ 0 ∞ a n x n \sum_0^\infty a_nx^n 0anxn发散,这个数 R R R 就被称为收敛半径。

2. 特殊的幂级数——泰勒展开

2.1函数的幂级数表达

我们已经知道幂级数的表达式为 ∑ 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum_0^\infty a_nx^n=a_0+a_1x+a_2x^2+...+ a_nx^n+... 0anxn=a0+a1x+a2x2+...+anxn+...
写成函数形式就是:(可以说多项式是幂级数的有限项展开)
f ( x ) = ∑ 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . f(x)=\sum_0^\infty a_nx^n=a_0+a_1x+a_2x^2+...+ a_nx^n+... f(x)=0anxn=a0+a1x+a2x2+...+anxn+...
并且在收敛域内 ( ∣ x ∣ &lt; R |x|&lt;R x<R), f ( x ) f(x) f(x)的所有高阶导数都存在。

2.2 泰勒公式

基本上所有函数都能以幂级数的形式展开,只是参数 a n a_n an不同。而泰勒公式的目的就是为了求解这些参数的值。

泰勒级数

泰勒级数的一般形式为:
f ( x ) = ∑ 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum_0^\infty \frac{f^{( n)}(x_0)}{n!}(x-x_0)^n f(x)=0n!f(n)(x0)(xx0)n
具体的展开我就不写了,因为泰勒展开的特殊情况才是重点。

特殊情况——麦克劳林公式

当泰勒公式中的 x 0 = 0 x_0=0 x0=0 时,我们就得到了非常重要的麦克劳林公式。
f ( x ) = ∑ 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . f(x)=\sum_0^\infty \frac{f^{( n)}(0)}{n!}x^n=f(0)+f&#x27;(0)x+\frac{f&#x27;&#x27;(0)}{2!}x^2+\frac{f&#x27;&#x27;&#x27;(0)}{3!}x^3+... f(x)=0n!f(n)(0)xn=f(0)+f(0)x+2!f(0)x2+3!f(0)x3+...

2.3 简单证明

我在这里简单证明以下麦克劳林公式。
函数 f ( x ) f(x) f(x) 能够表示成:
f ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . f(x)=a_0+a_1x+a_2x^2+...+ a_nx^n+... f(x)=a0+a1x+a2x2+...+anxn+...函数 f ( x ) f(x) f(x) 的一阶导数为: f ′ ( x ) = a 1 + 2 a 2 x + . . . + n a n x n − 1 + . . . f&#x27;(x)=a_1+2a_2x+...+ na_nx^{n-1}+... f(x)=a1+2a2x+...+nanxn1+...函数 f ( x ) f(x) f(x) 的二阶导数为: f ′ ′ ( x ) = 2 a 2 + 6 a 3 x + . . . + n ( n − 1 ) a n x n − 2 + . . . f&#x27;&#x27;(x)=2a_2+6a_3x+...+ n(n-1)a_nx^{n-2}+... f(x)=2a2+6a3x+...+n(n1)anxn2+... ⋯ \cdots ⋯ \cdots
这时我们只需要求在点 x = 0 x=0 x=0处的 n n n阶导数的值就得到了相关系数 a n a_n an
a 0 = f ( 0 ) , a 1 = f ′ ( 0 ) a_0=f(0),a_1=f&#x27;(0) a0=f(0),a1=f(0) a 2 = f ′ ′ ( 0 ) 2 ! a_2=\frac{f&#x27;&#x27;(0)}{2!} a2=2!f(0) a 3 = f ( 3 ) ( 0 ) 3 ! a_3=\frac{f^{(3)}(0)}{3!} a3=3!f(3)(0) ⋯ \cdots a n = f ( n ) ( 0 ) n ! a_n=\frac{f^{(n)}(0)}{n!} an=n!f(n)(0)

2.4 指数函数,正余弦函数的泰勒公式

常用的麦克劳林公式有:
(1)指数函数 e x e^x ex
e x = 1 + x + x 2 2 ! + x 3 3 ! + … e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots ex=1+x+2!x2+3!x3+
(2)正弦函数 sin ⁡ x \sin x sinx
sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots sinx=x3!x3+5!x57!x7+
(3)余弦函数 cos ⁡ x \cos x cosx
cos ⁡ x = sin ⁡ ′ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … \cos x=\sin&#x27;x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\ldots cosx=sinx=12!x2+4!x46!x6+
(注意,正余弦函数的高阶导数都是四个一循环)

3. 欧拉公式的证明

在大二大三学信号与系统,数字信号处理,分析交流电路的时候,欧拉公式都非常非常非常重要!!!!但是当时根本不知道为什么会有欧拉公式,只知道它包含了实部和虚部,还有它是最优美的公式,也没有查过如何证明。
今天在复习了泰勒公式之后,我才发现在有了泰勒公式的前提下,欧拉公式的证明是多么地直接。

由常用的三个泰勒展开式,我们可以得到:
e i x = 1 + i x − x 2 2 ! − x 3 3 ! + x 4 4 ! + x 5 5 ! − … e^{ix}=1+ix-\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}-\ldots eix=1+ix2!x23!x3+4!x4+5!x5 = ( 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … ) + i ( x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … ) =(1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\ldots)+i(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots) =(12!x2+4!x46!x6+)+i(x3!x3+5!x57!x7+)
(需要注意 i n i^n in 也是有周期性质的,周期为4, i 0 = 1 ; i 1 = i ; i 2 = − 1 ; i 3 = − i ; i 4 = 1 … i^0=1;i^1=i; i^2=-1;i^3=-i; i^4=1\ldots i0=1;i1=i;i2=1;i3=i;i4=1本质上来讲 i i i就是旋转 90 ° 90\degree 90° y y y 轴)

又因为我们知道: sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots sinx=x3!x3+5!x57!x7+ cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\ldots cosx=12!x2+4!x46!x6+
在函数 sin ⁡ x \sin x sinx前加入虚数 i i i 之后证明过程就变得非常直接了:
e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx
这就是著名的欧拉公式了!(之后复习到信号与系统我再详细介绍它的应用吧!)

参考

  1. 高等数学(下)无穷级数:https://blog.csdn.net/linxilinxilinxi/article/details/80920953
  2. MIT 18.01单变量微积分讲义: https://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-5-exploring-the-infinite/part-b-taylor-series/
  3. Infinite series:https://www.britannica.com/science/infinite-series
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值