GitHub链接:Hyperspectral-Classification Pytorch。
画重点!!!
完整版看这里嗷:GitHub开源项目Hyperspectral-Classification的解析。
项目简介
项目的作者是Xidian university,是基于PyTorch的高光谱图像地物目标的分类程序。该项目兼容Python 2.7和Python 3.5+,基于PyTorch深度学习和GPU计算框架,并使用Visdom可视化服务器。
预定义的公开的数据集有:
- 帕维亚大学
- 帕维亚中心
- 肯尼迪航天中心
- 印度松树
- 博茨瓦纳
用户也可添加自定义的数据集,示例是“数据融合大赛2018的高光谱数据集”DFC2018_HSI。开发人员应该为CUSTOM_DATASETS_CONFIG变量添加一个新条目,并为其用例定义特定的数据加载器。
该工具实现了scikit-learn库中的几个SVM变体以及PyTorch中实现的许多最先进的深度网络:
- SVM(带网格搜索的线性,RBF和多核)
- SGD(使用随机

本文解析了GitHub上的Hyperspectral-Classification项目,这是一个基于PyTorch的高光谱图像地物分类程序。项目包括SVM、CNN等多种模型,支持自定义数据集和网络。文章详细介绍了项目结构、主要函数及数据处理方法。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



