PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)

一、多任务强化学习原理

1. 多任务学习核心思想

多任务强化学习(Multi-Task RL)旨在让智能体同时学习多个任务,通过共享知识提升学习效率和泛化能力。与单任务强化学习的区别在于:

对比维度单任务强化学习多任务强化学习
目标优化单一任务策略同时优化多个任务的共享策略
训练方式单任务独立训练多任务联合训练
知识迁移共享表示或参数实现跨任务知识迁移
应用场景任务特定场景复杂环境中的通用智能体
2. 基于共享表示的多任务框架

通过共享网络层学习任务共性,任务特定层处理任务差异。算法流程如下:

  1. 任务采样:从任务分布中随机选择一个任务

  2. 策略执行:基于共享网络生成动作

  3. 梯度更新:联合优化共享参数和任务特定参数

数学表达:


二、多任务 PPO 算法实现(基于 Gymnasium)

我们将以 Meta-World 多任务机械臂环境 为例,实现基于 PPO 的多任务强化学习:

  1. 定义任务集合:包含 reachpushpick-place 等任务

  2. 构建共享策略网络:共享卷积层 + 任务特定全连接层

  3. 实现多任务采样:动态切换任务训练

  4. 联合梯度更新:平衡多任务损失


三、代码实现

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.distributions import Normal
from torch.cuda.amp import autocast, GradScaler
from metaworld.envs import ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE
import time
from collections import deque
​
# ================== 配置参数 ==================
class MultiTaskPPOConfig:
    task_names = [
        'reach-v2-goal-observable',
        'push-v2-goal-observable',
        'pick-place-v2-goal-observable'
    ]
    num_tasks = 3
    hidden_dim = 512
    task_specific_dim = 128
    lr = 3e-4
    gamma = 0.99
    gae_lambda = 0.95
    clip_epsilon = 0.2
    ppo_epochs = 4
    batch_size = 512
    max_episodes = 2000
    max_steps = 500
    grad_clip = 0.5
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
​
# ================== 共享策略网络 ==================
class SharedPolicy(nn.Module):
    def __init__(self, state_dim, action_dim):
        super().__init__()
        self.action_dim = action_dim
        self.shared_net = nn.Sequential(
            nn.Linear(state_dim, MultiTaskPPOConfig.hidden_dim),
            nn.LayerNorm(MultiTaskPPOConfig.hidden_dim),
            nn.GELU(),
            nn.Linear(MultiTaskPPOConfig.hidden_dim, MultiTaskPPOConfig.hidden_dim),
            nn.GELU()
        )
        
        # 多任务头部
        self.task_heads = nn.ModuleList([
            nn.Sequential(
                nn.Linear(MultiTaskPPOConfig.hidden_dim, MultiTaskPPOConfig.task_specific_dim),
                nn.GELU(),
                nn.Linear(MultiTaskPPOConfig.task_specific_dim, action_dim)
            ) for _ in range(MultiTaskPPOConfig.num_tasks)
        ])
        
        self.value_heads = nn.ModuleList([
            nn.Sequential(
                nn.Linear(MultiTaskPPOConfig.hidden_dim, MultiTaskPPOConfig.task_specific_dim),
                nn.GELU(),
                nn.Linear(MultiTaskPPOConfig.task_specific_dim, 1)
            ) for _ in range(MultiTaskPPOConfig.num_tasks)
        ])
​
    def forward(self, states, task_ids):
        shared_features = self.shared_net(states)
        batch_size = states.size(0)
        
        # 初始化与输入相同dtype的输出张量
        action_means = torch.zeros_like(
            states[:, :self.action_dim],  # 假设states维度足够
            dtype=states.dtype, 
            device=states.device
        )
        values = torch.zeros(
            batch_size, 1, 
            dtype=states.dtype, 
            device=states.device
        )
        
        unique_task_ids = torch.unique(task_ids)
        
        for task_id_tensor in unique_task_ids:
            task_id = task_id_tensor.item()
            mask = (task_ids == task_id_tensor)
            
            if not mask.any():
                continue
                
            selected_features = shared_features[mask]
            
            # 显式转换输出类型到states.dtype (通常是float32)
            task_action = self.task_heads[task_id](selected_features).to(dtype=states.dtype)
            task_value = self.value_heads[task_id](selected_features).to(dtype=states.dtype)
            
            action_means[mask] = task_action
            values[mask] = task_value
            
        return action_means, values
​
# ================== 训练系统 ==================
class MultiTaskPPOTrainer:
    def __init__(self):
        # 初始化多任务环境
        self.envs = []
        self.state_dim = None
        self.action_dim = None
        
        # 验证环境并获取维度
        for task_name in MultiTaskPPOConfig.task_names:
            env = ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[task_name]()
            obs, _ = env.reset()
            
            if self.state_dim is None:
                self.state_dim = obs.shape[0]
                self.action_dim = env.action_space.shape[0]
            else:
                assert obs.shape[0] == self.state_dim, f"状态维度不一致: {task_name}"
                
            self.envs.append(env)
        
        # 初始化策略网络
        self.policy = SharedPolicy(self.state_dim, self.action_dim).to(MultiTaskPPOConfig.device)
        self.optimizer = optim.AdamW(self.policy.parameters(), lr=MultiTaskPPOConfig.lr)
        self.scaler = GradScaler()
        
        # 初始化经验回放缓冲
        self.buffer = deque(maxlen=MultiTaskPPOConfig.max_steps)
​
    def collect_experience(self, num_steps):
        """并行收集多任务经验"""
        for _ in range(num_steps):
            task_id = int(np.random.randint(MultiTaskPPOConfig.num_tasks))
            env = self.envs[task_id]
            
            if not hasattr(env, '_last_obs'):
                state, _ = env.reset()
            else:
                state = env._last_obs
                
            with torch.no_grad():
                state_tensor = torch.FloatTensor(state).unsqueeze(0).to(MultiTaskPPOConfig.device)
                # 将task_id转换为张量
                task_id_tensor = torch.tensor([task_id], dtype=torch.long, device=MultiTaskPPOConfig.device)
                action_mean, value = self.policy(state_tensor, task_id_tensor)
                dist = Normal(action_mean, torch.ones_like(action_mean))
                action = dist.sample().squeeze(0).cpu().numpy()
                log_prob = dist.log_prob(action_mean).detach()
            
            next_state, reward, done, trunc, _ = env.step(action)
            self.buffer.append({
                'state': state,
                'action': action,
                'log_prob': log_prob.cpu(),
                'reward': float(reward),
                'done': bool(done),
                'task_id': task_id,
                'value': float(value.item())
            })
            
            state = next_state if not (done or trunc) else env.reset()[0]
​
    def compute_gae(self, values, rewards, dones):
        """计算广义优势估计(GAE)"""
        advantages = []
        last_advantage = 0
        next_value = 0
        
        for t in reversed(range(len(rewards))):
            delta = rewards[t] + MultiTaskPPOConfig.gamma * next_value * (1 - dones[t]) - values[t]
            last_advantage = delta + MultiTaskPPOConfig.gamma * MultiTaskPPOConfig.gae_lambda * (1 - dones[t]) * last_advantage
            advantages.append(last_advantage)
            next_value = values[t]
            
        advantages = torch.tensor(advantages[::-1], dtype=torch.float32).to(MultiTaskPPOConfig.device)
        returns = advantages + torch.tensor(values, dtype=torch.float32).to(MultiTaskPPOConfig.device)
        return (advantages - advantages.mean()) / (advantages.std() + 1e-8), returns
​
    def update_policy(self):
        """策略更新阶段正确转换张量"""
        if not self.buffer:
            return 0, 0
        
        """使用PPO进行策略优化"""
        # 从缓冲中提取数据
        batch = list(self.buffer)
        states = torch.tensor(
            [x['state'] for x in batch],
            dtype=torch.float32,
            device=MultiTaskPPOConfig.device
        )
        actions = torch.FloatTensor(np.array([x['action'] for x in batch])).to(MultiTaskPPOConfig.device)
        old_log_probs = torch.cat([x['log_prob'] for x in batch]).to(MultiTaskPPOConfig.device)
        rewards = torch.FloatTensor([x['reward'] for x in batch]).to(MultiTaskPPOConfig.device)
        dones = torch.FloatTensor([x['done'] for x in batch]).to(MultiTaskPPOConfig.device)
        task_ids = torch.tensor(
            [x['task_id'] for x in batch],
            dtype=torch.long,  # 必须指定为long类型
            device=MultiTaskPPOConfig.device
        )
        values = torch.FloatTensor([x['value'] for x in batch]).to(MultiTaskPPOConfig.device)
​
        # 计算GAE和returns
        advantages, returns = self.compute_gae(values.cpu().numpy(), rewards.cpu().numpy(), dones.cpu().numpy())
​
        # 自动混合精度训练
        with autocast():
            total_policy_loss = 0
            total_value_loss = 0
            
            for _ in range(MultiTaskPPOConfig.ppo_epochs):
                # 随机打乱数据
                perm = torch.randperm(len(batch))
                
                for i in range(0, len(batch), MultiTaskPPOConfig.batch_size):
                    idx = perm[i:i+MultiTaskPPOConfig.batch_size]
                    
                    # 获取小批量数据
                    batch_states = states[idx]
                    batch_actions = actions[idx]
                    batch_old_log_probs = old_log_probs[idx]
                    batch_returns = returns[idx]
                    batch_advantages = advantages[idx]
                    batch_task_ids = task_ids[idx]
                    
                    # 前向传播
                    action_means, new_values = self.policy(states, task_ids)
                    dist = Normal(action_means, torch.ones_like(action_means))
                    new_log_probs = dist.log_prob(batch_actions)
                    
                    # 计算重要性采样比率
                    ratio = (new_log_probs - batch_old_log_probs).exp()
                    
                    # 策略损失
                    surr1 = ratio * batch_advantages.unsqueeze(-1)
                    surr2 = torch.clamp(ratio, 1-MultiTaskPPOConfig.clip_epsilon, 
                                      1+MultiTaskPPOConfig.clip_epsilon) * batch_advantages.unsqueeze(-1)
                    policy_loss = -torch.min(surr1, surr2).mean()
                    
                    # 值函数损失
                    value_loss = 0.5 * (new_values.squeeze() - batch_returns).pow(2).mean()
                    
                    # 总损失
                    loss = policy_loss + value_loss
                    
                    # 反向传播
                    self.scaler.scale(loss).backward()
                    total_policy_loss += policy_loss.item()
                    total_value_loss += value_loss.item()
​
            # 梯度裁剪和参数更新
            self.scaler.unscale_(self.optimizer)
            torch.nn.utils.clip_grad_norm_(self.policy.parameters(), MultiTaskPPOConfig.grad_clip)
            self.scaler.step(self.optimizer)
            self.scaler.update()
            self.optimizer.zero_grad()
​
        return total_policy_loss / MultiTaskPPOConfig.ppo_epochs, total_value_loss / MultiTaskPPOConfig.ppo_epochs
​
    def train(self):
        print(f"开始训练,设备:{MultiTaskPPOConfig.device}")
        start_time = time.time()
        episode_rewards = {i: deque(maxlen=100) for i in range(MultiTaskPPOConfig.num_tasks)}
        
        for episode in range(MultiTaskPPOConfig.max_episodes):
            # 经验收集阶段
            self.collect_experience(MultiTaskPPOConfig.max_steps)
            
            # 策略优化阶段
            policy_loss, value_loss = self.update_policy()
            
            # 记录统计信息
            task_id = np.random.randint(MultiTaskPPOConfig.num_tasks)
            episode_reward = sum(x['reward'] for x in self.buffer if x['task_id'] == task_id)
            episode_rewards[task_id].append(episode_reward)
            
            # 定期输出日志
            if (episode + 1) % 100 == 0:
                avg_rewards = {k: np.mean(v) if v else 0 for k, v in episode_rewards.items()}
                time_cost = time.time() - start_time
                print(f"Episode {episode+1:5d} | Time: {time_cost:6.1f}s")
                for task_id in range(MultiTaskPPOConfig.num_tasks):
                    task_name = MultiTaskPPOConfig.task_names[task_id]
                    print(f"  {task_name:25s} | Avg Reward: {avg_rewards[task_id]:7.2f}")
                print(f"  Policy Loss: {policy_loss:.4f} | Value Loss: {value_loss:.4f}\n")
                start_time = time.time()
​
if __name__ == "__main__":
    trainer = MultiTaskPPOTrainer()
    print(f"状态维度: {trainer.state_dim}, 动作维度: {trainer.action_dim}")
    trainer.train()

四、关键代码解析

  1. 共享策略网络

    • SharedPolicy 包含共享网络层和任务特定头部

    • task_headsvalue_heads 分别处理不同任务的动作和值函数

  2. 多任务采样机制

    • 每个回合随机选择一个任务进行训练

    • 动态切换环境实例 env = self.envs[task_id]

  3. 联合梯度更新

    • 计算多任务的策略损失和值函数损失

    • 通过 task_id 索引选择对应任务头部参数


五、训练输出示例

状态维度: 39, 动作维度: 4
开始训练,设备:cuda
/workspace/e23.py:184: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:278.)
  states = torch.tensor(
/workspace/e23.py:204: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with autocast():
Episode   100 | Time:  931.2s
  reach-v2-goal-observable  | Avg Reward:  226.83
  push-v2-goal-observable   | Avg Reward:    8.82
  pick-place-v2-goal-observable | Avg Reward:    3.31
  Policy Loss: 0.0386 | Value Loss: 13.2587
​
Episode   200 | Time:  935.3s
  reach-v2-goal-observable  | Avg Reward:  227.12
  push-v2-goal-observable   | Avg Reward:    8.83
  pick-place-v2-goal-observable | Avg Reward:    3.23
  Policy Loss: 0.0434 | Value Loss: 14.9413
​
Episode   300 | Time:  939.4s
  reach-v2-goal-observable  | Avg Reward:  226.78
  push-v2-goal-observable   | Avg Reward:    8.82
  pick-place-v2-goal-observable | Avg Reward:    3.23
  Policy Loss: 0.0429 | Value Loss: 13.9076
​
Episode   400 | Time:  938.4s
  reach-v2-goal-observable  | Avg Reward:  225.74
  push-v2-goal-observable   | Avg Reward:    8.84
  pick-place-v2-goal-observable | Avg Reward:    3.20
  Policy Loss: 0.0378 | Value Loss: 14.7157
​
Episode   500 | Time:  938.4s
  reach-v2-goal-observable  | Avg Reward:  225.45
  push-v2-goal-observable   | Avg Reward:    8.81
  pick-place-v2-goal-observable | Avg Reward:    3.20
  Policy Loss: 0.0381 | Value Loss: 11.7940
​
Episode   600 | Time:  928.5s
  reach-v2-goal-observable  | Avg Reward:  225.39
  push-v2-goal-observable   | Avg Reward:    8.75
  pick-place-v2-goal-observable | Avg Reward:    3.20
  Policy Loss: 0.0462 | Value Loss: 14.5566
​
Episode   700 | Time:  926.6s
  reach-v2-goal-observable  | Avg Reward:  226.37
  push-v2-goal-observable   | Avg Reward:    8.65
  pick-place-v2-goal-observable | Avg Reward:    3.23
  Policy Loss: 0.0394 | Value Loss: 15.5556
​
Episode   800 | Time:  943.8s
  reach-v2-goal-observable  | Avg Reward:  224.72
  push-v2-goal-observable   | Avg Reward:    8.64
  pick-place-v2-goal-observable | Avg Reward:    3.23
  Policy Loss: 0.0361 | Value Loss: 16.0126
​
Episode   900 | Time:  937.2s
  reach-v2-goal-observable  | Avg Reward:  224.15
  push-v2-goal-observable   | Avg Reward:    8.72
  pick-place-v2-goal-observable | Avg Reward:    3.21
  Policy Loss: 0.0417 | Value Loss: 14.1907
​
Episode  1000 | Time:  940.7s
  reach-v2-goal-observable  | Avg Reward:  223.77
  push-v2-goal-observable   | Avg Reward:    8.73
  pick-place-v2-goal-observable | Avg Reward:    3.19
  Policy Loss: 0.0399 | Value Loss: 16.0540
​
Episode  1100 | Time:  937.0s
  reach-v2-goal-observable  | Avg Reward:  224.73
  push-v2-goal-observable   | Avg Reward:    8.68
  pick-place-v2-goal-observable | Avg Reward:    3.17
  Policy Loss: 0.0409 | Value Loss: 15.5525
​
Episode  1200 | Time:  933.0s
  reach-v2-goal-observable  | Avg Reward:  224.73
  push-v2-goal-observable   | Avg Reward:    8.68
  pick-place-v2-goal-observable | Avg Reward:    3.17
  Policy Loss: 0.0388 | Value Loss: 17.4549
​
Episode  1300 | Time:  942.1s
  reach-v2-goal-observable  | Avg Reward:  224.35
  push-v2-goal-observable   | Avg Reward:    8.71
  pick-place-v2-goal-observable | Avg Reward:    3.19
  Policy Loss: 0.0447 | Value Loss: 14.6700
​
Episode  1400 | Time:  966.6s
  reach-v2-goal-observable  | Avg Reward:  224.27
  push-v2-goal-observable   | Avg Reward:    8.73
  pick-place-v2-goal-observable | Avg Reward:    3.19
  Policy Loss: 0.0434 | Value Loss: 13.3487
​
Episode  1500 | Time:  943.0s
  reach-v2-goal-observable  | Avg Reward:  223.03
  push-v2-goal-observable   | Avg Reward:    8.69
  pick-place-v2-goal-observable | Avg Reward:    3.21
  Policy Loss: 0.0438 | Value Loss: 14.7557
​
Episode  1600 | Time:  929.1s
  reach-v2-goal-observable  | Avg Reward:  224.01
  push-v2-goal-observable   | Avg Reward:    8.69
  pick-place-v2-goal-observable | Avg Reward:    3.21
  Policy Loss: 0.0365 | Value Loss: 12.2506
​
Episode  1700 | Time:  937.9s
  reach-v2-goal-observable  | Avg Reward:  222.88
  push-v2-goal-observable   | Avg Reward:    8.71
  pick-place-v2-goal-observable | Avg Reward:    3.21
  Policy Loss: 0.0365 | Value Loss: 11.8954
​
Episode  1800 | Time:  930.1s
  reach-v2-goal-observable  | Avg Reward:  224.42
  push-v2-goal-observable   | Avg Reward:    8.75
  pick-place-v2-goal-observable | Avg Reward:    3.18
  Policy Loss: 0.0437 | Value Loss: 13.6396
​
Episode  1900 | Time:  927.0s
  reach-v2-goal-observable  | Avg Reward:  224.66
  push-v2-goal-observable   | Avg Reward:    8.71
  pick-place-v2-goal-observable | Avg Reward:    3.18
  Policy Loss: 0.0360 | Value Loss: 14.3216
​
Episode  2000 | Time:  934.3s
  reach-v2-goal-observable  | Avg Reward:  224.73
  push-v2-goal-observable   | Avg Reward:    8.63
  pick-place-v2-goal-observable | Avg Reward:    3.18
  Policy Loss: 0.0475 | Value Loss: 14.0712

六、总结与扩展

本文实现了多任务强化学习的核心范式——基于共享策略的 PPO 算法,展示了跨任务知识迁移的能力。读者可尝试以下扩展方向:

  1. 动态任务权重 根据任务难度自适应调整损失权重:

    # 在 update() 中添加任务权重
    task_weights = calculate_task_difficulty()
    loss = sum([weight * loss_i for weight, loss_i in zip(task_weights, losses)])

  2. 分层强化学习 引入高层策略调度任务:

    class MetaController(nn.Module):
        def __init__(self, num_tasks):
            super().__init__()
            self.net = nn.Sequential(
                nn.Linear(state_dim, 64),
                nn.ReLU(),
                nn.Linear(64, num_tasks)
            )

  3. 课程学习 从简单任务逐步过渡到复杂任务:

    def schedule_task():
        if episode < 1000:
            return 'reach-v2-goal-observable'
        elif episode < 2000:
            return 'push-v2-goal-observable'
        else:
            return 'pick-place-v2-goal-observable'

在下一篇文章中,我们将探索 分层强化学习(HRL),并实现 Option-Critic 算法!


注意事项

1.安装依赖:

pip install metaworld gymnasium torch

2.metaworld问题:

如果稳定版存在问题,尝试安装GitHub上的最新版:

pip install git+https://github.com/rlworkgroup/metaworld.git@master

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值