我的环境配置
记录一下2023.12.16我电脑成功配置的环境:
虚拟环境名称:cuda121
显卡型号:537.58
cuda:12.1.1,路径:D:\CUDAandCudnn\CUDA\CUDA\v12.1.1
cudnn:8.8.1,路径:D:\CUDAandCudnn\CuDNN\CuDNN8.8.1\cudnn-windows-x86_64-8.8.1.3_cuda12-archive
pytorch:torch-2.1.0%2Bcu121-cp38-cp38-win_amd64.whl,路径:D:\CUDAandCudnn\Torch
基础链接
显卡驱动更新位置: NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA
CUDA和显卡型号对应:1. CUDA 12.3 Update 1 Release Notes — Release Notes 12.3 documentation (nvidia.com) CUDNN: cuDNN Archive | NVIDIA Developer
CUDA: CUDA Toolkit Archive | NVIDIA Developer
Pytorch版本对应和下载位置: Previous PyTorch Versions | PyTorch
Pytorch Wheel: download.pytorch.org/whl/torch_stable.html
一定看好python版本!!
驱动
我下的是studio,结合网上的帖子,ready game更适合打游戏,但是同样会有一些小问题,studio有点像专业级,比较适合干活,打游戏的话可能会有掉帧现象,但是不影响。综合考虑,同时有工作和打游戏需求的人下载studio版本:
驱动型号在NVIDIA控制面板上看,我的是537.58.
CUDA
安装
参考链接:1. CUDA 12.3 Update 1 Release Notes — Release Notes 12.3 documentation (nvidia.com)
我决定下来12.1.1:CUDA Toolkit Archive | NVIDIA Developer
下载的时候参照这个链接:Cuda和cuDNN安装教程(超级详细)-CSDN博客 CUDA安装的时候不需要设置环境变量,因为系统已经给你设置好了:在环境变量 -> 系统变量下已经有CUDA_PATH和CUDA_PATH_{把版本}的环境变量。后期设置CuDNN就需要在Path下设置环境变量了。
注意
-
第一次下载的话自定义安装时全都打勾,下载了好几次的人打第一个勾即可。
-
如果想要卸载原先安装过的CUDA,比如说我要卸载12.0版本,那么就卸载以下标红的四个,卸载即可。考虑到之前安装的时候还修改过环境变量,把12.0相关path删掉即可。
检查
安装完重启,可以不卸载之前安装过的cuda,在win+r cmd中输入:nvcc -V,出现下图就是没问题了
CuDNN
安装
在这个链接下载cuDNN Archive | NVIDIA Developer。 参照链接:Cuda和cuDNN安装教程(超级详细)-CSDN博客,把CuDNN里面三个文件夹里的零散的小文件复制到对应CUDA文件夹名下,并在环境变量中的path里添加CUDA文件夹中bin lib include三个文件夹的路径作为环境变量。
添加之前会发现,Path中已经有过bin的环境变量,所以再加lib和include即可。
注意
-
看好CuDNN时间,比如说我的CUDA12.1.1应该是2023年4月release的,那么CuDNN也最好是这个时间点附近上的:Download cuDNN v8.8.1 (March 8th, 2023), for CUDA 12.x,所以版本是8.8.1。(其实我应该下8.9.0更合适一些?毕竟他也是四月份的,当时下载的时候没仔细看。)
检查
在安装CUDA的路径下找到:extras\demo_suite中的两个exe文件
cmd(不要在管理员权限下打开),先把第一个deviceQuery.exe文件移动到cmd里面,回车:
然后把bandwidthTest.exe移动到cmd里面,重复操作
如果cudnn型号不满意,那就重新下一个,然后把里面的文件复制到cuda对应文件夹里面即可。
Pytorch
安装
以上过程完成以后,进入官网下载GPU版本的pytorchStart Locally | PyTorch,如果官网没有你所需要的版本,就进入到previous-version里下载Previous PyTorch Versions | PyTorch,找到自己对应的pytorch(综合网上情报,cuda版本似乎不能高于Pytorch,但是也可以高于,比较玄学),然后进入到自己的环境里面conda或者pip即可。
但是!我都下载不了,都会出现版本不对应的error!!
我只能先把wheel下载下来然后pip install,参照链接:download.pytorch.org/whl/torch_stable.html
首先,你要重新确定一下你的python版本,在cmd自己的环境里面执行命令:pip debug --verbose。我的是python3.9版本,所以弹出来的是:
所以,我要下的轮子里面需要包含一下关键字:“cuda121 cp39 cp39 amd64”(cuda121意思是cuda12.1,我下载的版本是cuda12.1.1),在wheel中找到了:cu121/torch-2.1.0%2Bcu121-cp38-cp38-win_amd64.whl
然后,进入到环境里面,更换whl所在的路径:
执行pip install torch-2.1.0+cu121-cp39-cp39-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
如果总是distribution error,要么更换wheel,要么换cuda和cudnn,要么换显卡驱动,一点一点尝试吧。
检查
最后,验证一下torch是否安装成功,在python中输入:
import torch print(torch.cuda.is_available()) #返回True即认为torch可以使用GPU import torch print(torch.__version__)
结果:
True 2.1.0+cu121
如果是False,说明是CPU的,那就只能……重来吧。