显卡驱动 + CUDA + CuDNN + Pytorch全系列教程(非常详细)

本文详细记录了作者在2023年12月16日配置的CUDA12.1.1和CUDNN8.8.1环境,包括显卡型号、驱动选择、PyTorch版本安装步骤,以及注意事项和验证方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的环境配置

记录一下2023.12.16我电脑成功配置的环境:
虚拟环境名称:cuda121
显卡型号:537.58
cuda:12.1.1,路径:D:\CUDAandCudnn\CUDA\CUDA\v12.1.1
cudnn:8.8.1,路径:D:\CUDAandCudnn\CuDNN\CuDNN8.8.1\cudnn-windows-x86_64-8.8.1.3_cuda12-archive
pytorch:torch-2.1.0%2Bcu121-cp38-cp38-win_amd64.whl,路径:D:\CUDAandCudnn\Torch

基础链接

显卡驱动更新位置: NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA
CUDA和显卡型号对应:1. CUDA 12.3 Update 1 Release Notes — Release Notes 12.3 documentation (nvidia.com) CUDNN: cuDNN Archive | NVIDIA Developer
CUDA: CUDA Toolkit Archive | NVIDIA Developer
Pytorch版本对应和下载位置: Previous PyTorch Versions | PyTorch
Pytorch Wheel: download.pytorch.org/whl/torch_stable.html

一定看好python版本!!

驱动

我下的是studio,结合网上的帖子,ready game更适合打游戏,但是同样会有一些小问题,studio有点像专业级,比较适合干活,打游戏的话可能会有掉帧现象,但是不影响。综合考虑,同时有工作和打游戏需求的人下载studio版本:

驱动型号在NVIDIA控制面板上看,我的是537.58.

CUDA

安装

参考链接:1. CUDA 12.3 Update 1 Release Notes — Release Notes 12.3 documentation (nvidia.com)

我决定下来12.1.1:CUDA Toolkit Archive | NVIDIA Developer

下载的时候参照这个链接:Cuda和cuDNN安装教程(超级详细)-CSDN博客 CUDA安装的时候不需要设置环境变量,因为系统已经给你设置好了:在环境变量 -> 系统变量下已经有CUDA_PATH和CUDA_PATH_{把版本}的环境变量。后期设置CuDNN就需要在Path下设置环境变量了。

注意

  • 第一次下载的话自定义安装时全都打勾,下载了好几次的人打第一个勾即可。

  • 如果想要卸载原先安装过的CUDA,比如说我要卸载12.0版本,那么就卸载以下标红的四个,卸载即可。考虑到之前安装的时候还修改过环境变量,把12.0相关path删掉即可。

检查

安装完重启,可以不卸载之前安装过的cuda,在win+r cmd中输入:nvcc -V,出现下图就是没问题了

CuDNN

安装

在这个链接下载cuDNN Archive | NVIDIA Developer。 参照链接:Cuda和cuDNN安装教程(超级详细)-CSDN博客,把CuDNN里面三个文件夹里的零散的小文件复制到对应CUDA文件夹名下,并在环境变量中的path里添加CUDA文件夹中bin lib include三个文件夹的路径作为环境变量。
添加之前会发现,Path中已经有过bin的环境变量,所以再加lib和include即可。

注意

  • 看好CuDNN时间,比如说我的CUDA12.1.1应该是2023年4月release的,那么CuDNN也最好是这个时间点附近上的:Download cuDNN v8.8.1 (March 8th, 2023), for CUDA 12.x,所以版本是8.8.1。(其实我应该下8.9.0更合适一些?毕竟他也是四月份的,当时下载的时候没仔细看。)

检查

在安装CUDA的路径下找到:extras\demo_suite中的两个exe文件

cmd(不要在管理员权限下打开),先把第一个deviceQuery.exe文件移动到cmd里面,回车:

然后把bandwidthTest.exe移动到cmd里面,重复操作

如果cudnn型号不满意,那就重新下一个,然后把里面的文件复制到cuda对应文件夹里面即可。

Pytorch

安装

以上过程完成以后,进入官网下载GPU版本的pytorchStart Locally | PyTorch,如果官网没有你所需要的版本,就进入到previous-version里下载Previous PyTorch Versions | PyTorch,找到自己对应的pytorch(综合网上情报,cuda版本似乎不能高于Pytorch,但是也可以高于,比较玄学),然后进入到自己的环境里面conda或者pip即可。

但是!我都下载不了,都会出现版本不对应的error!!
我只能先把wheel下载下来然后pip install,参照链接:download.pytorch.org/whl/torch_stable.html
首先,你要重新确定一下你的python版本,在cmd自己的环境里面执行命令:pip debug --verbose。我的是python3.9版本,所以弹出来的是:

所以,我要下的轮子里面需要包含一下关键字:“cuda121 cp39 cp39 amd64”(cuda121意思是cuda12.1,我下载的版本是cuda12.1.1),在wheel中找到了:cu121/torch-2.1.0%2Bcu121-cp38-cp38-win_amd64.whl
然后,进入到环境里面,更换whl所在的路径:

执行pip install torch-2.1.0+cu121-cp39-cp39-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple/
如果总是distribution error,要么更换wheel,要么换cuda和cudnn,要么换显卡驱动,一点一点尝试吧。

检查

最后,验证一下torch是否安装成功,在python中输入:

 import torch
 print(torch.cuda.is_available())
 #返回True即认为torch可以使用GPU
 ​
 import torch
 print(torch.__version__)

结果:

 True
 2.1.0+cu121

如果是False,说明是CPU的,那就只能……重来吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值