vgg16猫狗识别

 

我的环境:

● 难度:夯实基础⭐⭐
● 语言:Python3、TensorFlow2
● 时间:9月12-9月16日

🍺 要求:

  1. 了解model.train_on_batch()并运用(✔)
  2. 了解tqdm,并使用tqdm实现可视化进度条(✔)

🍻 拔高(可选):

  1. 本文代码中存在一个严重的BUG,请找出它并配以文字说明(✔)

🔎 探索(难度有点大)

  1. 修改代码,处理BUG(✔)

目录

一 前期工作

1.设置GPU或者cpu

2.导入数据

3.查看数据

二 数据预处理

1.加载数据

2.可视化数据

3.再次检查数据

4.配置数据集

三 搭建网络

四 训练模型

1.设置学习率

2.模型训练

 五 模型评估

1.Loss和Accuracy图

 2.指定图片进行预测

 3.总结


一 前期工作

环境:python3.7,1080ti,tensorflow2.5(网上租的环境😂😂)

由于电脑问题,现在在jupytr上跑了,所以代码风格发生变化。

1.设置GPU或者cpu

设置cpu(电脑gpu跑不动就用这个将就一下)

from tensorflow import keras
from tensorflow.keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import tensorflow as tf
import tensorflow as tf
import os,PIL
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#os.environ['CUDA_VISIBLE_DEVICES']='0'
os.environ['CUDA_VISIBLE_DEVICES']='2'
# os.environ['TF_CPP_MIN_LOG_LEVEL']='2'#屏蔽通知和警告信息
import os,PIL
os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
from tensorflow import keras
keras.backend.clear_session()

设置gpu

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf
import numpy             as np
 
gpus = tf.config.list_physical_devices("GPU")
 
if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

2.导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./365-7-data"
data_dir = pathlib.Path(data_dir)

3.查看数据

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

二 数据预处理

1.加载数据

设置数据尺寸

batch_size = 8
img_height = 224
img_width = 224

设置dataset

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

关于image_dataset_from_directory()的详细介绍可以参考文章:(7条消息) tf.keras.preprocessing.image_dataset_from_directory() 简介_K同学啊的博客-CSDN博客_tf.keras.preprocessing.image

 

   输出经过image_dataset_from_directory()分类后的标签

class_names = train_ds.class_names
print(class_names)

2.可视化数据

打印部分图片

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1)  
 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

3.再次检查数据

输出数据的尺寸

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

4.配置数据集

shuffle:打乱数据集

prefetch:加速处理

AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三 搭建网络

 

本文神经网络为官方vgg16模型,我们需要做的是对最后一层按我们的类别进行分类即可。

调用官方

model = keras.applications.VGG16(include_top=False,weights='imagenet')
global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
prediction_layer1 = tf.keras.layers.Dense(1024,activation='relu')
prediction_layer2 = tf.keras.layers.Dense(512,activation='relu')
prediction_layer3 = tf.keras.layers.Dense(len(class_names),activation='softmax')
 
model = tf.keras.Sequential([
  model,
  global_average_layer,
  prediction_layer1,
  prediction_layer2,
  prediction_layer3
])
model.summary()

 关于VGG16函数参考下面文章

(7条消息) keras 自带VGG16 net 参数分析_vola9527的博客-CSDN博客

我们对vgg16前部分卷积层没有改变,而是不选择官方的dense层,因为我们需要根据自己的数据进行输出,官方输出为1000种分类,我们只有2种,因此按照这个写法即可。 

 自己搭建

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling( 1. ,input_shape=(img_height, img_width, 3)),
    layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same'),  # 卷积层1
    #layers.BatchNormalization(),  # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', ),
    #layers.BatchNormalization(),  # BN层1
    layers.Activation('relu') , # 激活层1
    layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
    #layers.Dropout(0.2),  # dropout层
    #
    layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization(),  # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization(),  # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
    #layers.Dropout(0.2),  # dropout层
    #
    layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization() , # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization() , # BN层1
    layers.Activation('relu') , # 激活层1
    layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
   # layers.BatchNormalization(),
    layers.Activation('relu'),
    layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
    #layers.Dropout(0.2),
    #
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
   # layers.BatchNormalization() , # BN层1
    layers.Activation('relu') , # 激活层1
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization() , # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization(),
    layers.Activation('relu'),
    layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
    #layers.Dropout(0.2),
    #
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
   # layers.BatchNormalization() , # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
    #layers.BatchNormalization(),  # BN层1
    layers.Activation('relu'),  # 激活层1
    layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
   # layers.BatchNormalization(),
    layers.Activation('relu'),
    layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
    #layers.Dropout(0.2),
 
 
    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(4096, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(4096, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(len(class_names),activation='softmax')  # 输出层,输出预期结果
])
model.summary()

四 训练模型

模型训练时,需要完成如下设置

损失函数(loss):衡量模型准确率

优化器(optimizer):根据损失函数进行优化更新

指标(metrics):监控训练过程,保存最优模型

1.设置学习率

model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

注意损失函数不要用错了!

对于损失函数可以参考下面文章

(7条消息) tensorflow损失函数详解_重邮研究森的博客-CSDN博客

此外,需要注意在dataset设置中label_model的设置会影响loss

2.早期与保存最佳模型参数
关于ModelCheckpoint参考下面文章

(7条消息) ModelCheckpoint 讲解【TensorFlow2入门手册】_K同学啊的博客-CSDN博客_modelcheckpoint的filepath

2.模型训练

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)
        
        train_loss     = []
        train_accuracy = []
        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
             # 这里生成的是每一个batch的acc与loss
            history = model.train_on_batch(image,label)
            
            train_loss.append(history[0])
            train_accuracy.append(history[1])
            
            pbar.set_postfix({"train_loss": "%.4f"%history[0],
                              "train_acc":"%.4f"%history[1],
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
            
        history_train_loss.append(np.mean(train_loss))
        history_train_accuracy.append(np.mean(train_accuracy))
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        val_loss     = []
        val_accuracy = []
        for image,label in val_ds:      
            # 这里生成的是每一个batch的acc与loss
            history = model.test_on_batch(image,label)
            
            val_loss.append(history[0])
            val_accuracy.append(history[1])
            
            pbar.set_postfix({"val_loss": "%.4f"%history[0],
                              "val_acc":"%.4f"%history[1]})
            pbar.update(1)
        history_val_loss.append(np.mean(val_loss))
        history_val_accuracy.append(np.mean(val_accuracy))
            
    print('结束验证!')
    print("验证loss为:%.4f"%np.mean(val_loss))
    print("验证准确率为:%.4f"%np.mean(val_accuracy))

 五 模型评估

1.Loss和Accuracy图

 

 2.指定图片进行预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

 3.总结

1.了解了一种新的训练方式train_on_batch,我个人感觉看起来很麻烦!!!还是fit友好。

对于该方法可以参考下面这个文章。目前我个人认为还用不到这个方法。

model.train_on_batch介绍【TensorFlow2入门手册】 · 语雀 (yuque.com)

2.了解了python中的tqdm。简单来说就是对于一个循环,我们可以把它的信息通过进度条的方式打印下来。该方法可以参考下面文章

python进度条库tqdm详解 - 知乎 (zhihu.com)

3. 由于习惯之前写法,于是我又重新按照之前的模式写了。官方模型准确率:100%

4.关于错误问题:如下所示,之前会把每次的loss和val赋值给之前的值,而现在则是插入结果。

 

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
课程导语:    人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介:赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。 课程设计: 本课程分为5大模块,19小节,共计540时长(约9小时): 第一部分,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络、卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络、卷积神经网络、循环神经网络;案例简介。 第二部分,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。 MLP技术点实战案例:第三部分,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络 ; CNN模型分析;主流CNN模型; Python调用keras实现CNN; CNN技术点实战案例:第四部分,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。 RNN技术点实战案例: 第五部分,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。 混合模型技术点实战案例

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值