VGG16识别Kaggle猫狗(Pytorch实战)

VGG16识别猫狗

导入常用的库函数

import time
import os

import numpy as np

import torch
import torch.nn.functional as F
import torch.nn as nn


from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms

from PIL import Image
import matplotlib.pyplot as plt

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

获取数据

Cats vs Dogs Dataset

下载连接

 https://www.kaggle.com/c/dogs-vs-cats/data

在Kaggl平台下进行解压

!unzip ../input/dogs-vs-cats/test1.zip  
!unzip ../input/dogs-vs-cats/train.zip  

dataset文件夹由两个子文件夹train和test1组成,分别包含jpg格式的训练图像和测试图像。请注意,测试集示例未标记。

import os

num_train_cats = len([i for i in os.listdir(os.path.join('dogs-vs-cats', 'train')) 
                      if i.endswith('.jpg') and i.startswith('cat')])

num_train_dogs = len([i for i in os.listdir(os.path.join('dogs-vs-cats', 'train')) 
                      if i.endswith('.jpg') and i.startswith('dog')])

print(f'Training set cats: {num_train_cats}')
print(f'Training set dogs: {num_train_dogs}')
Training set cats: 12500
Training set dogs: 12500

查看数据

img = Image.open(os.path.join('./','train', 'cat.59.jpg'))
print(np.asarray(img, dtype=np.uint8).shape)
plt.imshow(img)

在这里插入图片描述

创建验证和测试子集

将2500个图像从训练文件夹移动到测试集文件夹中。
将2500张图像从训练文件夹移动到验证集文件夹中。

if not os.path.exists(os.path.join('./', 'test')):
    os.mkdir(os.path.join('./', 'test'))

if not os.path.exists(os.path.join('./', 'valid')):
    os.mkdir(os.path.join('./', 'valid'))
for fname in os.listdir(os.path.join('./', 'train')):
    if not fname.endswith('.jpg'):
        continue
    _, img_num, _ = fname.split('.')
    filepath = os.path.join('./', 'train', fname)
    img_num = int(img_num)
    if img_num > 11249:
        os.rename(filepath, filepath.replace('train', 'test'))
    elif img_num > 9999:
        os.rename(filepath, filepath.replace('train', 'valid'))

标准化图像

class CatsDogsDataset(Dataset):
    """Custom Dataset for loading CelebA face images"""

    def __init__(self, img_dir, transform=None):
    
        self.img_dir = img_dir
        
        self.img_names = [i for i in 
                          os.listdir(img_dir) 
                          if i.endswith('.jpg')]
        
        self.y = []
        for i in self.img_names:
            if i.split('.')[0] == 'cat':
                self.y.append(0)
            else:
                self.y.append(1)
        
        self.transform = transform

    def __getitem__(self, index):
        img = Image.open(os.path.join(self.img_dir,
                                      self.img_names[index]))
        
        if self.transform is not None:
            img = self.transform(img)
        
        label = self.y[index]
        return img, label

    def __len__(self):
        return len(self.y)

    

custom_transform1 = transforms.Compose([transforms.Resize([64, 64]),
                                        transforms.ToTensor()])

train_dataset = CatsDogsDataset(img_dir=os.path.join('./', 'train'), 
                                transform=custom_transform1)

train_loader = DataLoader(dataset=train_dataset, 
                          batch_size=5000, 
                          shuffle=False)

train_mean = []
train_std = []

for i, image in enumerate(train_loader, 0):
    numpy_image = image[0].numpy()
    
    batch_mean = np.mean(numpy_image, axis=(0, 2, 3))
    batch_std = np.std(numpy_image, axis=(0, 2, 3))
    
    train_mean.append(batch_mean)
    train_std.append(batch_std)

train_mean = torch.tensor(np.mean(train_mean, axis=0))
train_std = torch.tensor(np.mean(train_std, axis=0))

print('Mean:', train_mean)
print('Std Dev:', train_std)
Mean: tensor([0.4875, 0.4544, 0.4164])
Std Dev: tensor([0.2521, 0.2453, 0.2481])

创建数据集

BATCH_SIZE = 128

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomRotation(5),
        transforms.RandomHorizontalFlip(),
        transforms.RandomResizedCrop(64, scale=(0.96, 1.0), ratio=(0.95, 1.05)),
        transforms.ToTensor(),
        transforms.Normalize(train_mean, train_std)
    ]),
    'valid': transforms.Compose([
        transforms.Resize([64, 64]),
        transforms.ToTensor(),
        transforms.Normalize(train_mean, train_std)
    ]),
}


train_dataset = CatsDogsDataset(img_dir=os.path.join('./', 'train'), 
                                transform=data_transforms['train'])

train_loader = DataLoader(dataset=train_dataset, 
                          batch_size=BATCH_SIZE,
                          drop_last=True,
                          shuffle=True)

valid_dataset = CatsDogsDataset(img_dir=os.path.join('./', 'valid'), 
                                transform=data_transforms['valid'])

valid_loader = DataLoader(dataset=valid_dataset, 
                          batch_size=BATCH_SIZE, 
                          shuffle=False)

test_dataset = CatsDogsDataset(img_dir=os.path.join('./', 'test'), 
                               transform=data_transforms['valid'])

test_loader = DataLoader(dataset=test_dataset, 
                         batch_size=BATCH_SIZE, 
                         shuffle=False)

创建模型

class VGG16(torch.nn.Module):

    def __init__(self, num_classes):
        super(VGG16, self).__init__()
        
        # calculate same padding:
        # (w - k + 2*p)/s + 1 = o
        # => p = (s(o-1) - w + k)/2
        
        self.block_1 = nn.Sequential(
                nn.Conv2d(in_channels=3,
                          out_channels=64,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          # (1(32-1)- 32 + 3)/2 = 1
                          padding=1), 
                nn.ReLU(),
                nn.Conv2d(in_channels=64,
                          out_channels=64,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2),
                             stride=(2, 2))
        )
        
        self.block_2 = nn.Sequential(
                nn.Conv2d(in_channels=64,
                          out_channels=128,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.Conv2d(in_channels=128,
                          out_channels=128,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2),
                             stride=(2, 2))
        )
        
        self.block_3 = nn.Sequential(        
                nn.Conv2d(in_channels=128,
                          out_channels=256,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.Conv2d(in_channels=256,
                          out_channels=256,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),        
                nn.Conv2d(in_channels=256,
                          out_channels=256,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.Conv2d(in_channels=256,
                          out_channels=256,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2),
                             stride=(2, 2))
        )
        
          
        self.block_4 = nn.Sequential(   
                nn.Conv2d(in_channels=256,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),        
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),        
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),   
                nn.MaxPool2d(kernel_size=(2, 2),
                             stride=(2, 2))
        )
        
        self.block_5 = nn.Sequential(
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),            
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),            
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),
                nn.Conv2d(in_channels=512,
                          out_channels=512,
                          kernel_size=(3, 3),
                          stride=(1, 1),
                          padding=1),
                nn.ReLU(),   
                nn.MaxPool2d(kernel_size=(2, 2),
                             stride=(2, 2))             
        )
        
        self.classifier = nn.Sequential(
                nn.Linear(512*2*2, 4096),
                nn.ReLU(),   
                nn.Linear(4096, 4096),
                nn.ReLU(),
                nn.Linear(4096, num_classes)
        )
        for m in self.modules():
            if isinstance(m, torch.nn.Conv2d):
                #n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                #m.weight.data.normal_(0, np.sqrt(2. / n))
                m.weight.detach().normal_(0, 0.05)
                if m.bias is not None:
                    m.bias.detach().zero_()
            elif isinstance(m, torch.nn.Linear):
                m.weight.detach().normal_(0, 0.05)
                m.bias.detach().detach().zero_()
        


        
        
    def forward(self, x):

        x = self.block_1(x)
        x = self.block_2(x)
        x = self.block_3(x)
        x = self.block_4(x)
        x = self.block_5(x)

        logits = self.classifier(x.view(-1, 512*2*2))
        probas = F.softmax(logits, dim=1)

        return logits,probas
NUM_EPOCHS = 8

model = VGG16(num_classes=2)

model = model.to(DEVICE)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

训练

开启训练


def compute_accuracy_and_loss(model, data_loader, device):
    correct_pred, num_examples = 0, 0
    cross_entropy = 0.
    for i, (features, targets) in enumerate(data_loader):
            
        features = features.to(device)
        targets = targets.to(device)

        logits, probas = model(features)
        cross_entropy += F.cross_entropy(logits, targets).item()
        _, predicted_labels = torch.max(probas, 1)
        num_examples += targets.size(0)
        correct_pred += (predicted_labels == targets).sum()
    return correct_pred.float()/num_examples * 100, cross_entropy/num_examples
    

start_time = time.time()
train_acc_lst, valid_acc_lst = [], []
train_loss_lst, valid_loss_lst = [], []

for epoch in range(NUM_EPOCHS):
    
    model.train()
    
    for batch_idx, (features, targets) in enumerate(train_loader):
    
        ### PREPARE MINIBATCH
        features = features.to(DEVICE)
        targets = targets.to(DEVICE)
            
        ### FORWARD AND BACK PROP
        logits, probas = model(features)
        cost = F.cross_entropy(logits, targets)
        optimizer.zero_grad()
        
        cost.backward()
        
        ### UPDATE MODEL PARAMETERS
        optimizer.step()
        
        ### LOGGING
        if not batch_idx % 120:
            print (f'Epoch: {epoch+1:03d}/{NUM_EPOCHS:03d} | '
                   f'Batch {batch_idx:03d}/{len(train_loader):03d} |' 
                   f' Cost: {cost:.4f}')

    # no need to build the computation graph for backprop when computing accuracy
    model.eval()
    with torch.set_grad_enabled(False):
        train_acc, train_loss = compute_accuracy_and_loss(model, train_loader, device=DEVICE)
        valid_acc, valid_loss = compute_accuracy_and_loss(model, valid_loader, device=DEVICE)
        train_acc_lst.append(train_acc)
        valid_acc_lst.append(valid_acc)
        train_loss_lst.append(train_loss)
        valid_loss_lst.append(valid_loss)
        print(f'Epoch: {epoch+1:03d}/{NUM_EPOCHS:03d} Train Acc.: {train_acc:.2f}%'
              f' | Validation Acc.: {valid_acc:.2f}%')
        
    elapsed = (time.time() - start_time)/60
    print(f'Time elapsed: {elapsed:.2f} min')
  
elapsed = (time.time() - start_time)/60
print(f'Total Training Time: {elapsed:.2f} min')
Epoch: 001/008 | Batch 000/156 | Cost: 15317.9863
Epoch: 001/008 | Batch 120/156 | Cost: 0.6863
Epoch: 001/008 Train Acc.: 62.80% | Validation Acc.: 62.36%
Time elapsed: 3.15 min
Epoch: 002/008 | Batch 000/156 | Cost: 0.6732
Epoch: 002/008 | Batch 120/156 | Cost: 0.6635
Epoch: 002/008 Train Acc.: 63.87% | Validation Acc.: 64.56%
Time elapsed: 6.31 min
Epoch: 003/008 | Batch 000/156 | Cost: 0.5801
Epoch: 003/008 | Batch 120/156 | Cost: 0.6056
Epoch: 003/008 Train Acc.: 66.84% | Validation Acc.: 66.48%
Time elapsed: 9.47 min
Epoch: 004/008 | Batch 000/156 | Cost: 0.6102
Epoch: 004/008 | Batch 120/156 | Cost: 0.6219
Epoch: 004/008 Train Acc.: 68.42% | Validation Acc.: 67.92%
Time elapsed: 12.60 min
Epoch: 005/008 | Batch 000/156 | Cost: 0.6080
Epoch: 005/008 | Batch 120/156 | Cost: 0.6027
Epoch: 005/008 Train Acc.: 68.54% | Validation Acc.: 67.44%
Time elapsed: 15.69 min
Epoch: 006/008 | Batch 000/156 | Cost: 0.5779
Epoch: 006/008 | Batch 120/156 | Cost: 0.6334
Epoch: 006/008 Train Acc.: 68.95% | Validation Acc.: 68.16%
Time elapsed: 18.80 min
Epoch: 007/008 | Batch 000/156 | Cost: 0.6451
Epoch: 007/008 | Batch 120/156 | Cost: 0.6107
Epoch: 007/008 Train Acc.: 69.16% | Validation Acc.: 67.68%
Time elapsed: 21.92 min
Epoch: 008/008 | Batch 000/156 | Cost: 0.5551
Epoch: 008/008 | Batch 120/156 | Cost: 0.5993
Epoch: 008/008 Train Acc.: 70.10% | Validation Acc.: 69.44%
Time elapsed: 25.06 min
Total Training Time: 25.06 min

训练损失和测试损失关系图

plt.plot(range(1, NUM_EPOCHS+1), train_loss_lst, label='Training loss')
plt.plot(range(1, NUM_EPOCHS+1), valid_loss_lst, label='Validation loss')
plt.legend(loc='upper right')
plt.ylabel('Cross entropy')
plt.xlabel('Epoch')
plt.show()

在这里插入图片描述

训练精度和测试精度关系图

plt.plot(range(1, NUM_EPOCHS+1), train_acc_lst, label='Training accuracy')
plt.plot(range(1, NUM_EPOCHS+1), valid_acc_lst, label='Validation accuracy')
plt.legend(loc='upper left')
plt.ylabel('Cross entropy')
plt.xlabel('Epoch')
plt.show()

在这里插入图片描述

保存权重

PATH = "./my_net.pth"
torch.save(model.state_dict(), PATH)
  • 0
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
课程导语:    人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介:赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。 课程设计: 本课程分为5大模块,19小节,共计540时长(约9小时): 第一部分,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络、卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络、卷积神经网络、循环神经网络;案例简介。 第二部分,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。 MLP技术点实战案例:第三部分,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络 ; CNN模型分析;主流CNN模型; Python调用keras实现CNN; CNN技术点实战案例:第四部分,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。 RNN技术点实战案例: 第五部分,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。 混合模型技术点实战案例

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值