第二章 图像及其表达与性质 Part1
从本章开始就会涉及到很多的公式了,详细请参照原书。
2.1图像表达概念
2.1.1图像函数分类
在图像处理中我们使用数学模型来进行描述,数学模型可以简单的理解为f(t)即随时间变换的一个函数,也可以是f(x,y)依赖于平面上两个点的函数,或者是三个分量(RGB)所组成的彩色图像。
这里可以把函数分为三种类型,连续的、离散的或数字的。
定义域 | 值域 | |
---|---|---|
连续函数 | 连续 | 连续 |
离散函数 | 离散 | 连续 |
数字函数 | 离散 | 离散 |
2.1.2连续图像函数
为了方便地描述图像函数的值引入亮度的概念(当然也可以是其他的物理量)。图像函数的值对应图像点的亮度,这里的亮度包含了很多(光学量)比如颜色。(值得细说)
拿摄像机举例,感光元件上的像是2D的,记录了2D的明亮度信息,我们称之为亮度图像。同时2D的亮度图像是3D场景中的透视投影。如果是线性的好说,遵循相似三角形定理,如下图所示。
对于非线性的透视投影一般也近似为线性的平行(或正交)投影。需要注意,在非线性的情况下f→∞,z→∞为远处物体的透视投影极限情况。
2.1.3静态图像
对于图像处理,通常考虑以时间t作为常量的静态图像。使用单色的静态图像来表示,其图像函数为f(x,y),定义域xy分别为平面坐标(坐标通常采用笛卡尔坐标系),其值域也是有限的,一般在单色图像中以黑(0)白(1)来表示,位于黑白之间的用灰阶(通常也是离散的)来表示。
2.1.4 数字图像的品质
数字图像的品质随着空间、频谱、辐射计量、时间分辨率增长而提高,对应的有四个重要的分辨率。
- **空间分辨率:**由图像平面上图像采样点的接近程度确定。
- 频谱分辨率:传感器获得的光线的频率带宽
- 辐射计量分辨率:对应灰阶的数量
- 时间分辨率:由图像获取的时间采样间隔决定。动态图像中非常重要,如图像的时间序列。
2.1.5 损失
很明显图像由3D透视投影到2D必定有信息损失。想从2D恢复到3D场景难度可想而知,这块具体到人工智能那一块去看,有一个“建立图像中点的深度(depth) 这个中间表达层次”这个概念,如可以建立表达即可得到物体的任何视角的亮度图像。
第二就是图像被限制在了亮度信息这里,物体表面的反射特性、观察者和光源的角度都位置,这些都后续再说。
2.2图像数字化
原始图像→缩小图像(采样+量化),这一部分就这两个主要概念。
2.2.1采样
采样有两个问题,其一是确定采样的间隔,即相邻两个采样图像点的距离,其二是设置采样点
的几何排列(采样栅格) 。
采样就是将一个大的分辨率压缩到小的分辨率上,简单理解是1080P→720P ,这些采样点在平面上以方形或者正六边形排列,尤其数据结构决定,一般是矩阵。其中每一个小格成为栅格,栅格中一个无限小的采样点对应于数字化图像中的一个像元,也称作像素(pixel) 或图像元素(image element) 。从图像分析的角度看,像素是不能再分割的一个单位。
2.2.2量化
紧接上文,采样为一个区域最终要作为一个像素点填充到新的图像中去,这个将连续的图像函数转为数字量的计算过程称为量化。一个像素点可以用多个位来表示,对于彩色图像一般采用每个像素每个通道8位的表示方式。
在量化级别不够时会出现伪轮廓的问题,如果一个区域的局部亮度过低,很可能会量化为一个值,这就是伪轮廓。这个问题也可以通过非等间隔的量化策略来减轻,具体的方法是对图像中较少出现的亮度用比较大的量化间隔。下图形象地展示了不同的亮度级别不同的效果