out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, num\_outputs=None, #输出的分类数
backbone=None,
pretrained=False,
curriculum\_steps=None,
extra\_outputs=0,
share\_top\_y=True,
pred\_category=False,
block=BasicBlock, block\_num=[2,2,2,2],include_top=True, groups=1,
width\_per\_group=64):
# blocks\_num:残差结构中每个block存在多少个layer层
super(ResNet, self).__init__()
self.include_top = include_top
self.in_channel = 64 # 输入图片经过第一层卷积的通道数
self.groups = groups
self.width_per_group = width_per_group
self.conv1 = nn.Conv2d(3, self.in_channel, kernel\_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, block_num[0])
self.layer2 = self._make_layer(block, 128, block_num[1], stride=2)
self.layer3 = self._make_layer(block, 256, block_num[2], stride=2)
self.layer4 = self._make_layer(block, 512, block_num[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size =(1,1)
self.fc = nn.Linear(512 * block.expansion, 1000)
image_size = 12
patch_size = 3 # 后期尝试改为2
dim = 128
depth = 2
num_classes = 35
expansion_factor = 4
num_patches = (image_size // patch_size) ** 2
self.curriculum_steps = [0, 0, 0, 0] if curriculum_steps is None else curriculum_steps
self.share_top_y = share_top_y
self.extra_outputs = extra_outputs
self.pred_category = pred_category
self.sigmoid = nn.Sigmoid()
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None
if stride != 1 or self.in_channel != channel * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channel, channel * block.expansion, kernel\_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channel * block.expansion))
layers = []
layers.append(block(self.in_channel,
channel,
downsample=downsample,
stride=stride,
groups=self.groups,
width\_per\_group=self.width_per_group))
self.in_channel = channel * block.expansion
for \_ in range(1, block_num):
layers.append(block(self.in_channel,
channel,
groups=self.groups,
width\_per\_group=self.width_per_group))
return nn.Sequential(*layers)
def forward(self, x, epoch=None, **kwargs):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x) # torch.Size[B 128 12 20]
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
if name == “__main__”:
# device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
device = ‘cpu’
print(“-----device:{}”.format(device))
print(“-----Pytorch version:{}”.format(torch.version))
input_tensor = torch.zeros(1, 3, 100, 100)
print('input\_tensor:', input_tensor.shape)
pretrained_file = "./model\_resnet18.pt"
model = ResNet()
model.load_state_dict(torch.load(pretrained_file))
model.eval()
out = model(input_tensor)
print("out:", out.shape, out[0, 0:10])
运行结果如下:
-----device:cpu
-----Pytorch version:1.5.0
input_tensor: torch.Size([1, 3, 100, 100])
out: torch.Size([1, 1000]) tensor([ 0.4010, 0.8436, 0.3071, 0.0627, 0.4446, 0.8470, 0.1882, 0.7012,
0.2988, -0.7574], grad_fn=)
3.修改resnet18的网络架构后,如何加载原来已经训练好的模型参数。
例如:
#将114行的代码修改成
self.layer44 = self._make_layer(block, 512, block_num[3], stride=2)
#将166行的代码修改成
x = self.layer44(x)
直接加载模型,运行结果:
RuntimeError: Error(s) in loading state_dict for ResNet:
Missing key(s) in state_dict: “layer44.0.conv1.weight”, “layer44.0.bn1.weight”, “layer44.0.bn1.bias”, “layer44.0.bn1.running_mean”, “layer44.0.bn1.running_var”, “layer44.0.conv2.weight”, “layer44.0.bn2.weight”, “layer44.0.bn2.bias”, “layer44.0.bn2.running_mean”, “layer44.0.bn2.running_var”, “layer44.0.downsample.0.weight”, “layer44.0.downsample.1.weight”, “layer44.0.downsample.1.bias”, “layer44.0.downsample.1.running_mean”, “layer44.0.downsample.1.running_var”, “layer44.1.conv1.weight”, “layer44.1.bn1.weight”, “layer44.1.bn1.bias”, “layer44.1.bn1.running_mean”, “layer44.1.bn1.running_var”, “layer44.1.conv2.weight”, “layer44.1.bn2.weight”, “layer44.1.bn2.bias”, “layer44.1.bn2.running_mean”, “layer44.1.bn2.running_var”.
Unexpected key(s) in state_dict: “layer4.0.conv1.weight”, “layer4.0.bn1.weight”, “layer4.0.bn1.bias”, “layer4.0.bn1.running_mean”, “layer4.0.bn1.running_var”, “layer4.0.bn1.num_batches_tracked”, “layer4.0.conv2.weight”, “layer4.0.bn2.weight”, “layer4.0.bn2.bias”, “layer4.0.bn2.running_mean”, “layer4.0.bn2.running_var”, “layer4.0.bn2.num_batches_tracked”, “layer4.0.downsample.0.weight”, “layer4.0.downsample.1.weight”, “layer4.0.downsample.1.bias”, “layer4.0.downsample.1.running_mean”, “layer4.0.downsample.1.running_var”, “layer4.0.downsample.1.num_batches_tracked”, “layer4.1.conv1.weight”, “layer4.1.bn1.weight”, “layer4.1.bn1.bias”, “layer4.1.bn1.running_mean”, “layer4.1.bn1.running_var”, “layer4.1.bn1.num_batches_tracked”, “layer4.1.conv2.weight”, “layer4.1.bn2.weight”, “layer4.1.bn2.bias”, “layer4.1.bn2.running_mean”, “layer4.1.bn2.running_var”, “layer4.1.bn2.num_batches_tracked”.
方法一:将原来预训练好的模型参数迁移到新的resnet18网络架构中,只有迁移两者相同的模型参数,不同的参数还是随机初始化。
**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**
**深知大多数Linux运维工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**
**因此收集整理了一份《2024年Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**
![img](https://img-blog.csdnimg.cn/img_convert/77e2dc0acba7703a5d7129f7fc675d87.png)
![img](https://img-blog.csdnimg.cn/img_convert/702876a721bad64b276974f4745cf90a.png)
![img](https://img-blog.csdnimg.cn/img_convert/6e550f4e053bc549d807a5696fe0676b.png)
![img](https://img-blog.csdnimg.cn/img_convert/744603d945e05b14684b5647d0ad040e.png)
![img](https://img-blog.csdnimg.cn/img_convert/2381aeaf556f10a0fb7efff80ce048fc.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Linux运维知识点,真正体系化!**
**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
**如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)**
![img](https://img-blog.csdnimg.cn/img_convert/5872837a4d1618ff3f193654dbde5550.jpeg)
为了做好运维面试路上的助攻手,特整理了上百道 **【运维技术栈面试题集锦】** ,让你面试不慌心不跳,高薪offer怀里抱!
这次整理的面试题,**小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。**
![](https://img-blog.csdnimg.cn/img_convert/2fdbaa2ed670fd079395408dc633b08c.png)
本份面试集锦涵盖了
* **174 道运维工程师面试题**
* **128道k8s面试题**
* **108道shell脚本面试题**
* **200道Linux面试题**
* **51道docker面试题**
* **35道Jenkis面试题**
* **78道MongoDB面试题**
* **17道ansible面试题**
* **60道dubbo面试题**
* **53道kafka面试**
* **18道mysql面试题**
* **40道nginx面试题**
* **77道redis面试题**
* **28道zookeeper**
**总计 1000+ 道面试题, 内容 又全含金量又高**
* **174道运维工程师面试题**
> 1、什么是运维?
> 2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的?
> 3、现在给你三百台服务器,你怎么对他们进行管理?
> 4、简述raid0 raid1raid5二种工作模式的工作原理及特点
> 5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择?
> 6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择?
> 7、Tomcat和Resin有什么区别,工作中你怎么选择?
> 8、什么是中间件?什么是jdk?
> 9、讲述一下Tomcat8005、8009、8080三个端口的含义?
> 10、什么叫CDN?
> 11、什么叫网站灰度发布?
> 12、简述DNS进行域名解析的过程?
> 13、RabbitMQ是什么东西?
> 14、讲一下Keepalived的工作原理?
> 15、讲述一下LVS三种模式的工作过程?
> 16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?
> 17、如何重置mysql root密码?
**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
![img](https://img-blog.csdnimg.cn/img_convert/f8b36d362ffabbcfccec9a53cdd5e911.jpeg)
> 15、讲述一下LVS三种模式的工作过程?
> 16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?
> 17、如何重置mysql root密码?
**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
[外链图片转存中...(img-27Kx4FQX-1712543809353)]