PyTorch深度学习实践-P3梯度下降算法

  • 又名贪心算法
  • 上一讲的w用穷举法来找出,但如果w有两个,或者不是线性时,就很难找
  • 要找w 使得cost(w)最小

 

 

  •  求出了w的更新公式~
  • 代码:
  • import matplotlib.pyplot as plt
    
    # prepare the training set
    x_data = [1.0, 2.0, 3.0]
    y_data = [2.0, 4.0, 6.0]
    
    # initial guess of weight
    w = 1.0
    
    
    # define the model linear model y = w*x
    def forward(x):
        return x * w
    
    
    # define the cost function MSE
    def cost(xs, ys):
        cost = 0
        for x, y in zip(xs, ys):
            y_pred = forward(x)
            cost += (y_pred - y) ** 2
        return cost / len(xs)
    
    
    # define the gradient function  gd
    def gradient(xs, ys):
        grad = 0
        for x, y in zip(xs, ys):
            grad += 2 * x * (x * w - y)
        return grad / len(xs)
    
    
    epoch_list = []
    cost_list = []
    print('predict (before training)', 4, forward(4))
    for epoch in range(100):
        cost_val = cost(x_data, y_data)
        grad_val = gradient(x_data, y_data)
        w -= 0.01 * grad_val  # 0.01 learning rate
        print('epoch:', epoch, 'w=', w, 'loss=', cost_val)
        epoch_list.append(epoch)
        cost_list.append(cost_val)
    
    print('predict (after training)', 4, forward(4))
    plt.plot(epoch_list, cost_list)
    plt.ylabel('cost')
    plt.xlabel('epoch')
    plt.show()

     Stochastic Gradient Descent:随机梯度下降

  • 不同之处:cost 变成了loss

 代码:

import matplotlib.pyplot as plt

# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# initial guess of weight
w = 1.0


# define the model linear model y = w*x
def forward(x):
    return x * w


# define the cost function MSE
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


# define the gradient function  gd
def gradient(x, y):
    return x*x*(x*w-y)

epoch_list = []
cost_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        grad = gradient(x, y)
    w = w - 0.01 * grad
    print("\tgrad: ", x, y, grad)
    l = loss(x, y)

    print("progress:", epoch, "w=", w, "loss=", l)
    epoch_list.append(epoch)
    cost_list.append(l)

print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

 

 

 progress: 97 w= 1.9999999999999596 loss= 1.4590771302967834e-26
    grad:  3.0 6.0 -1.0871303857129533e-12
progress: 98 w= 1.9999999999999705 loss= 7.888609052210118e-27
    grad:  3.0 6.0 -7.993605777301127e-13
progress: 99 w= 1.9999999999999785 loss= 4.203839763922772e-27
predict (after training) 4 7.999999999999914

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>