MATLAB仪表表盘数字识别

该文介绍了一种基于MATLAB的神经网络方法,用于无指针仪表表盘的数字识别。通过图像预处理、特征提取、粗糙集特征约简,然后利用BP神经网络进行识别,提高了识别的效率和准确性。实验结果表明,这种方法在数字识别中表现出较高的精确率。
摘要由CSDN通过智能技术生成

MATLAB仪表表盘数字识别

摘要

针对无指针式仪表表盘的数字识别问题,提出一种基于特征提取和粗糙集特征约简的神经网络数字识别方法。该方法 首先利用数字图像预处理技术处理图像并利用特征提取方法提取数字图像特征,然后利用粗糙集理论进行特征约简,最后 将约简后的信息输入到训练好的神经网络进行识别。

关键词:神经网络,数字识别,粗糙集,特征提取



目前,对于指针式表盘而言,可以根据二值化后的指针指向 来识别表盘的读数,而对于某些特殊类型的表盘,由于没有可判 断读数的指针,只能通过表盘上的数字来读取表盘数据,这无疑 增大了识别的难度,这类表盘中数字识别就显得格外重要。针对 这种情况,本文在对待识别数字图像进行预处理和特征提取的 基础上,利用粗糙集理论进行特征约简,以减少神经网络的规模 和结构复杂度,最后利用神经网络进行仪表表盘的数字识别。

1数字识别的基本过程

本文数字图像的识别过程如图1所示,主要包括获取数字 图像、数字图像预处理、特征提取、粗糙集特征约简和神经网络 数字识别几个阶段。


v2-847f3f478886a042fdc16bfb1bd7d988_b.jpg


图1数字识别基本过程图


2数字图像预处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值