【预测模型】基于emd-lstm实现风速数据预测matlab源码

1 模型

本文提出了一种经验模态分解-长短期记忆神经网络(EMD-LSTM)方法融合的风速预测模型.首先对预处理后的风速数据进行重构,并对重构后的出力序列进行EMD分解,针对分解得到的各子序列分别建立长短期记忆神经网络模型,最后将各子序列预测模型得到的结果叠加得到风速预测值.

2 部分代码

clc;clear;format compact;close all;tic

rng('default')

%% 数据预处理

load emd_data

imf=u;

c=size(imf,1);

pre_result=[];

true_result=[];

%% 对每个分量建模

for i=1:c

disp(['对第',num2str(i),'个分量建模'])

[x,y]=data_process(imf(i,:),24);

%归一化

[xs,mappingx]=mapminmax(x',0,1);x=xs';

[ys,mappingy]=mapminmax(y',0,1);y=ys';

%划分数据

n=size(x,1);

m=round(n*0.7);%前70%训练,对最后30%进行预测

XTrain=x(1:m,:)';

XTest=x(m+1:end,:)';

YTrain=y(1:m,:)';

YTest=y(m+1:end,:)';

% 反归一化

pre_value=mapminmax('reverse',YPred,mappingy);

true_value=mapminmax('reverse',YTest,mappingy);

pre_result=[pre_result;pre_value];

true_result=[true_result;true_value];

end

%% 各分量预测的结果相加

true_value=sum(true_result);

predict_value=sum(pre_result);

save 结果/emd_lstm predict_value true_value

%%

load 结果/emd_lstm

disp('结果分析')

rmse=sqrt(mean((true_value-predict_value).^2));

disp(['根均方差(RMSE):',num2str(rmse)])

mae=mean(abs(true_value-predict_value));

disp(['平均绝对误差(MAE):',num2str(mae)])

mape=mean(abs(true_value-predict_value)/true_value);

disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])

fprintf('\n')

figure

plot(true_value,'-*','linewidth',3)

hold on

plot(predict_value,'-s','linewidth',3)

legend('实际值','预测值')

grid on

title('EMD-LSTM')

3 仿真结果

4 参考文献

[1]朱玥, 顾洁, & 孟璐. (2020). 基于emd-lstm的光伏发电预测模型. 电力工程技术, v.39;No.190(02), 58-65.

[2]刘云鹏, 许自强, 董王英,等. 基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法[J]. 中国电机工程学报, 2019, v.39;No.624(13):313-323.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值