1 模型
本文提出了一种经验模态分解-长短期记忆神经网络(EMD-LSTM)方法融合的风速预测模型.首先对预处理后的风速数据进行重构,并对重构后的出力序列进行EMD分解,针对分解得到的各子序列分别建立长短期记忆神经网络模型,最后将各子序列预测模型得到的结果叠加得到风速预测值.
2 部分代码
clc;clear;format compact;close all;tic
rng('default')
%% 数据预处理
load emd_data
imf=u;
c=size(imf,1);
pre_result=[];
true_result=[];
%% 对每个分量建模
for i=1:c
disp(['对第',num2str(i),'个分量建模'])
[x,y]=data_process(imf(i,:),24);
%归一化
[xs,mappingx]=mapminmax(x',0,1);x=xs';
[ys,mappingy]=mapminmax(y',0,1);y=ys';
%划分数据
n=size(x,1);
m=round(n*0.7);%前70%训练,对最后30%进行预测
XTrain=x(1:m,:)';
XTest=x(m+1:end,:)';
YTrain=y(1:m,:)';
YTest=y(m+1:end,:)';
% 反归一化
pre_value=mapminmax('reverse',YPred,mappingy);
true_value=mapminmax('reverse',YTest,mappingy);
pre_result=[pre_result;pre_value];
true_result=[true_result;true_value];
end
%% 各分量预测的结果相加
true_value=sum(true_result);
predict_value=sum(pre_result);
save 结果/emd_lstm predict_value true_value
%%
load 结果/emd_lstm
disp('结果分析')
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(true_value-predict_value)/true_value);
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
fprintf('\n')
figure
plot(true_value,'-*','linewidth',3)
hold on
plot(predict_value,'-s','linewidth',3)
legend('实际值','预测值')
grid on
title('EMD-LSTM')
3 仿真结果
4 参考文献
[1]朱玥, 顾洁, & 孟璐. (2020). 基于emd-lstm的光伏发电预测模型. 电力工程技术, v.39;No.190(02), 58-65.
[2]刘云鹏, 许自强, 董王英,等. 基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法[J]. 中国电机工程学报, 2019, v.39;No.624(13):313-323.