✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
无人机路径规划是一个重要的研究领域,它涉及到领导跟随者算法的应用。领导跟随者算法是一种分布式的控制算法,可以用于多无人机系统中的路径规划和协调。下面是一个基于领导跟随者算法实现无人机路径规划的基本步骤:
-
确定目标点:首先需要确定无人机的起始点和目标点。起始点可以是无人机的当前位置,目标点可以是用户指定的位置或者需要自动识别的目标。
-
确定领导无人机:在多无人机系统中,选择一个无人机作为领导无人机。领导无人机负责生成路径,并通过通信或传感器信息与其他无人机进行通信。
-
生成路径:领导无人机使用路径规划算法生成一条从起始点到目标点的路径。常用的路径规划算法包括A*算法、Dijkstra算法、遗传算法等。
-
分配任务:领导无人机将路径分配给其他跟随者无人机。可以使用分布式控制算法将路径分配给跟随者无人机,并确保它们能够按照指定的路径飞行。
-
实时更新:在飞行过程中,领导无人机会根据实时的环境信息和目标点的变化更新路径。跟随者无人机会根据领导无人机的指令进行飞行。
-
避障处理:在路径规划过程中需要考虑避障问题。可以使用传感器数据或者机器学习算法来检测障碍物,并在路径规划过程中避开障碍物。
-
优化性能:可以使用优化算法来优化路径规划的性能。例如,可以使用遗传算法来优化路径的长度或者时间。
⛄ 部分代码
clc
clear all
close all
load('leader.mat')
alpha_m=0.1; %Learning rate of the modal network
alpha_c=0.1; %Learning rate of the critic network
alpha_a=0.1; %Learning rate the action network
areafa=0.9;
Uc=0;
N_c=50; %Internal cycle of the critic network
N_a=50; %Internal cycle of the action network
T_cError=1e-10; %Internal training error threshold for the critic network
T_aError=1e-10; %Internal training error threshold for the action network
T_mError=0.1; %Internal training error threshold for the model network
N_aHidden = 6; %Number of action network nodes in hidden layer
N_cHidden = 8; %Number of critic network nodes in hidden layer
N_mHidden = 8; %Number of modal network nodes in hidden layer
WA_Inputs = 2; %执行网络输入节点数
WC_Inputs = 2; %评价网络输入节点数
WM_Inputs = 3; %评价网络输入节点数
wm11=(rand(WM_Inputs,N_mHidden)-0.5)*0.5;
wm21=(rand(N_mHidden,2)-0.5)*0.5;
wc11=(rand(WC_Inputs,N_cHidden)-0.5)*0.5;
wc21=(rand(N_cHidden,1)-0.5)*0.5;
wa11=(rand(WA_Inputs,N_aHidden)-0.5)*0.5;
wa21=(rand(N_aHidden,1)-0.5)*0.5;
wc12=(rand(WC_Inputs,N_cHidden)-0.5)*0.5;
wc22=(rand(N_cHidden,1)-0.5)*0.5;
wa12=(rand(WA_Inputs,N_aHidden)-0.5)*0.5;
wa22=(rand(N_aHidden,1)-0.5)*0.5;
follower1=[1.5,-1];
% follower2=[1,-0.3];
% leader=[10,10];
% newSt0=leader;
newSt1=follower1;
x1(:,1)=newSt1;
Input_a=newSt1-x(:,1)';
[vm,h,g]=caculAN(Input_a,wa11,wa21);
U1=vm;
udata1(1)=U1;
for i=1:199
[vm,h,g]=caculAN(Input_a,wa11,wa21);
U1=vm;
udata1(i+1)=U1;
newSt1=TPSystem(newSt1,U1); %计算K时刻x0状态
x1(:,i+1)=newSt1; %存储K时刻x0状态
Input_1c=newSt1-x(:,i+1)'; %K时刻评价网络输入e(k)
Input_a=Input_1c; %K时刻执行网络输入e(k)
Input_m=[newSt1,U1]; %K时刻模型网络输入[x0(k),U1(k)]
error1=TPSystem(newSt1,U1); %K+1时刻x0真实值
[Xk1,wm11,wm21,s,h]=caculCM(Input_m,wm11,wm21,T_mError,error1,alpha_m);%Xk1为智能体1预测的下一时刻值
Input_2c=Xk1-x(i+2); %K+1时刻评价网络输入e(k+1)
[J2,p,q] = caculCN(Input_2c,wc11,wc21);
[J1,p,q] = caculCN(Input_1c,wc11,wc21);
[U1,h,g]=caculAN(Input_a,wa11,wa21);
U_xy=Input_1c*Input_1c'*0.01+U1*U1;
ec = J1-J2-U_xy;
Ec = 0.5 * ec^2;
ceshi=0;
while(Ec>T_cError&&ceshi<50)
ceshi=ceshi+1;
[wc11,wc21]=upCN(alpha_c,ec,p,Input_1c,wc11,wc21);
[J1,p,q] = caculCN(Input_1c,wc11,wc21);
ec = J1-J2-U_xy;
Ec = 0.5 * ec^2;
end
[J2,p,q] = caculCN(Input_2c,wc11,wc21);
ea= U_xy+J2+Uc;
Ea = 0.5 * ea^2;
ceshi=0;
while (Ea>T_aError&&ceshi<50)
ceshi=ceshi+1;
[wa21,wa11]=upAction( alpha_a,Input_a,vm,ea,q,g,N_aHidden,WC_Inputs,wa11,wa21,wc11,wc21);
[U1,h,g]=caculAN(Input_a,wa11,wa21);
Input_m=[newSt1,U1]; %K时刻模型网络输入[x0(k),U1(k)]
error1=TPSystem(newSt1,U1); %K+1时刻x0真实值
[Xk1,wm11,wm21,s,h]=caculCM(Input_m,wm11,wm21,T_mError,error1,alpha_m);%Xk1为智能体1预测的下一时刻值
Input_2c=Xk1-x(i+2);
[J2,p,q] = caculCN(Input_2c,wc11,wc21);
U_xy=Input_1c*Input_1c'+U1*U1;
ea= U_xy+J2+Uc;
Ea = 0.5 * ea^2;
end
end
subplot(2,1,1);
plot(x(1,:));
hold on
plot(x1(1,:));
grid on
hold on
subplot(2,1,2);
plot(x(2,:));
hold on
plot(x1(2,:));
grid on
title('领导者与智能体1的轨迹');
figure
subplot(2,1,1);
plot(x(1,:));
grid on
subplot(2,1,2);
plot(x(2,:));
grid on
title('领导者的轨迹');
figure
plot(udata1);
title('自适应产生的控制律的轨迹');
⛄ 运行结果
⛄ 参考文献
[1] 林腾飞.基于一致性理论的多四旋翼无人机协同编队研究[J].[2023-07-21].
[2] 韩乔妮,杨博,陈彩莲,等.下行异构网络中基于多领导者多跟随者博弈的功率控制算法[J]. 2014.