✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

在数字图像处理领域,我们经常需要对图像进行各种处理操作,以获得我们所需的视觉效果。其中一些常见的操作包括颜色映射、重新调整大小和更改分辨率、伽玛校正、对比度调整以及颜色反转。本文将深入探讨这些操作的原理、应用和效果。

首先,让我们来了解一下颜色映射。颜色映射是一种将图像从一个颜色空间映射到另一个颜色空间的过程。常见的颜色空间包括RGB(红绿蓝)、CMYK(青黄洋红黑)和HSV(色调饱和度亮度)。通过颜色映射,我们可以改变图像的色调、饱和度和亮度,从而达到不同的视觉效果。例如,将一张彩色图像转换为黑白图像就是一种颜色映射操作。

接下来,我们将讨论重新调整大小和更改分辨率的操作。重新调整大小是指改变图像的尺寸,通常通过增加或减少图像的像素数量来实现。这可以用于调整图像在不同显示设备上的大小,或者用于创建缩略图。更改分辨率则是指改变图像的像素密度,即每英寸的像素数量。通过增加或减少像素密度,我们可以改变图像的清晰度和细节程度。

伽玛校正是一种用于调整图像亮度和对比度的操作。它基于人眼对亮度的感知方式,通过对图像的亮度曲线进行调整来改变图像的整体亮度。伽玛校正可以用于增加图像的对比度,使图像更加鲜明和清晰。

对比度调整是一种改变图像中亮度级别之间差异的操作。通过增加或减少亮度级别之间的差异,我们可以改变图像的整体对比度。这对于突出图像中的细节或者创建艺术效果非常有用。

最后,我们将讨论颜色反转。颜色反转是一种将图像中的颜色值取反的操作。这意味着亮的像素变暗,暗的像素变亮,红色变为青色,绿色变为洋红,蓝色变为黄色。颜色反转可以用于创建艺术效果或者增强图像中的特定区域。

总结起来,各种颜色映射、重新调整大小和更改分辨率、伽玛校正、对比度调整以及颜色反转操作都是数字图像处理中常见的操作。它们可以用于改变图像的外观和视觉效果,使图像更加生动、清晰和吸引人。无论是在艺术创作中还是在科学研究中,这些操作都扮演着重要的角色。通过深入了解这些操作的原理和应用,我们可以更好地利用数字图像处理技术,创造出令人惊叹的图像作品。

📣 部分代码

m=1;
for i=0:pi/180:2*pi
    if(p==1)
        D2(m)=sqrt((P(2,1)-d(1)*cos(i))^2+(P(2,2)-d(1)*sin(i))^2);
        D3(m)=sqrt((P(3,1)-d(1)*cos(i))^2+(P(3,2)-d(1)*sin(i))^2);
        e2(m)=abs(D2(m)-d(2));
        e3(m)=abs(D3(m)-d(3));
        subplot(3,1,1);
        plot(m,D2(m),'k.');
        hold on
        grid on
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
        subplot(3,1,2);
        plot(m,D3(m),'b.');
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
        hold on
        grid on
    elseif(p==2)
        D1(m)=sqrt((P(1,1)-d(1)*cos(i))^2+(P(1,2)-d(1)*sin(i))^2);
        D3(m)=sqrt((P(3,1)-d(1)*cos(i))^2+(P(3,2)-d(1)*sin(i))^2);
        e1(m)=abs(D1(m)-d(1));
        e3(m)=abs(D3(m)-d(3));
        subplot(3,1,1);
        plot(m,D1(m),'k.');
        hold on
        grid on
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
        subplot(3,1,2);
        plot(m,D3(m),'b.');
        hold on
        grid on
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
    else
        D1(m)=sqrt((P(1,1)-d(1)*cos(i))^2+(P(1,2)-d(1)*sin(i))^2);
        D2(m)=sqrt((P(2,1)-d(1)*cos(i))^2+(P(2,2)-d(1)*sin(i))^2);
        e1(m)=abs(D1(m)-d(1));
        e2(m)=abs(D2(m)-d(2));
        subplot(3,1,1);
        plot(m,D1(m),'k.');
        hold on
        grid on
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
        subplot(3,1,2);
        plot(m,D2(m),'b.'); 
        hold on
        grid on
        xlabel('angle in degrees')
        ylabel('distance')
        title('variation in distance with angle')
    end
m=m+1;
end

⛳️ 运行结果

各种颜色映射、重新调整大小和更改分辨率、伽玛校正,对比度,反转颜色Matlab代码实现_布局优化

🔗 参考文献

[1] 康燕妮,黄欢,朱玉艳,等.基于SIFT的超分辨率图像配准及MATLAB实现[J].电脑知识与技术:学术版, 2009, 5(10):3.DOI:10.3969/j.issn.1009-3044.2009.28.079.

[2] 赵鸿雁,唐万有,谭欢.基于MATLAB的不同分辨率图像边缘检测效果的研究[J].包装工程, 2009(11):4.DOI:CNKI:SUN:BZGC.0.2009-11-028.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合