【故障诊断】基于基于卷积神经网络-双向门控循环单元结合注意力机制CNN-BIGRU-Attention实现故障诊断附matlab代码

本文介绍了一种基于卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制的故障诊断方法,用于工业设备的实时故障检测。通过自动特征提取,该算法在适应不同设备和故障类型上表现出色,具有高准确性和效率,对工业生产有实际应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

故障诊断一直是工业领域中一个重要的任务,它可以帮助企业及时发现和解决设备故障,提高生产效率和质量。近年来,随着人工智能技术的快速发展,基于深度学习的故障诊断方法得到了广泛关注和应用。本文将介绍一种基于卷积神经网络-双向门控循环单元结合注意力机制的故障诊断算法流程,称为CNN-BIGRU-Attention。

首先,我们需要明确故障诊断的目标和流程。故障诊断的目标是根据设备的传感器数据和其他相关信息,判断设备是否存在故障,并确定故障的类型和原因。故障诊断的流程一般包括数据采集、特征提取、模型训练和故障判断等步骤。

在数据采集阶段,我们需要收集设备传感器的数据,例如温度、压力、振动等。这些数据可以通过传感器设备或者数据采集系统获取,并存储在数据库中供后续处理使用。

在特征提取阶段,我们需要从原始数据中提取有用的特征,以便于后续的模型训练和故障判断。传统的特征提取方法通常基于领域知识和经验,但这种方法往往需要大量的人工参与和专业知识,并且很难适应不同设备和故障类型的需求。而基于深度学习的方法可以自动学习和提取数据中的特征,具有更好的适应性和泛化能力。

在模型训练阶段,我们使用已经标注好的故障数据作为训练集,通过深度学习模型对数据进行训练。卷积神经网络(CNN)可以有效地提取数据的空间特征,而双向门控循环单元(BIGRU)可以捕捉数据的时序特征。这两种模型结合起来可以更好地处理时间序列数据,并提高故障诊断的准确性和效率。

在故障判断阶段,我们使用训练好的模型对新的未知数据进行预测和判断。注意力机制可以帮助模型更加关注重要的特征和时间点,提高预测的准确性。通过对预测结果的分析和判断,我们可以确定设备是否存在故障,并进一步确定故障的类型和原因。

总结起来,本文介绍了一种基于卷积神经网络-双向门控循环单元结合注意力机制的故障诊断算法流程。这种方法通过自动学习和提取数据中的特征,能够更好地适应不同设备和故障类型的需求。通过实验验证,该方法在故障诊断的准确性和效率上都取得了很好的结果,具有较高的应用价值和推广潜力。希望本文的研究能够为工业领域的故障诊断提供新的思路和方法。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 安文杰,陈长征,田淼,等.基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究[J].机电工程, 2022(008):039.

[2] 李玲.燃煤电站SCR脱硝系统数据驱动建模与复合优化控制研究[J].[2023-10-29].

[3] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.

[4] 王伟,孙玉霞,齐庆杰,等.基于BiGRU-attention神经网络的文本情感分类模型[J].计算机应用研究, 2019, 036(012):3558-3564.DOI:10.19734/j.issn.1001-3695.2018.07.0413.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值