✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着人工智能技术的不断发展,基于深度学习的数据预测算法在各个领域得到了广泛的应用。其中,卷积神经网络(CNN)和极限学习机(ELM)是两种常见的深度学习模型,它们分别在图像处理和数据回归预测领域有着良好的表现。本文将介绍一种基于卷积神经网络结合极限学习机的数据回归预测算法流程,帮助读者了解这一先进的预测模型。
首先,我们来介绍一下卷积神经网络(CNN)。CNN是一种专门用于处理图像数据的深度学习模型,它通过卷积层、池化层和全连接层来提取图像中的特征,并进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域有着广泛的应用,其优势在于能够自动提取图像的特征,从而减少了人工特征工程的工作量。
接下来,我们介绍极限学习机(ELM)。ELM是一种单隐层前馈神经网络,其特点在于随机初始化输入层到隐层的连接权重和隐层到输出层的连接权重,然后通过解析解的方式快速求解输出层的权重。ELM在数据回归和分类问题上有着较好的泛化能力和快速的训练速度,因此被广泛应用于各种机器学习任务中。
基于以上介绍,我们将卷积神经网络和极限学习机结合起来,形成了一种新的数据回归预测算法流程。具体步骤如下:
-
数据准备:首先,我们需要准备用于训练和测试的数据集,确保数据集的质量和完整性。
-
卷积神经网络特征提取:利用卷积神经网络对输入数据进行特征提取,得到高维的特征表示。
-
特征压缩:将卷积神经网络提取的高维特征通过降维或其他方法进行压缩,以减少特征的维度和复杂度。
-
极限学习机回归预测:将压缩后的特征作为输入,利用极限学习机进行回归预测,得到最终的预测结果。
-
模型评估和优化:对预测模型进行评估,根据评估结果进行模型参数调优和性能优化。
通过以上步骤,我们可以得到基于卷积神经网络结合极限学习机的数据回归预测算法流程。这种算法流程能够充分利用卷积神经网络提取的特征和极限学习机的快速训练能力,从而在数据回归预测任务上取得较好的效果。
总之,基于卷积神经网络结合极限学习机的数据回归预测算法流程是一种先进的预测模型,其在数据预测领域有着广泛的应用前景。希望本文能够为读者提供一些有益的信息,帮助大家更好地理解和应用这一先进的算法流程。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 赵娜,秦琴,马振宇,等.基于卷积神经网络结合极限学习机的办公垃圾图像分类[J].信息与电脑, 2021(033-024).
[2] 潘晓明,周学良,吴琪文.基于改进卷积门控循环神经网络的刀具磨损状态识别[J].工具技术, 2023, 57(7):146-152.
[3] 李冰王宝亮由磊杨沫.应用并联卷积神经网络的人脸防欺骗方法[J].小型微型计算机系统, 2017, 038(010):2187-2191.