多元回归预测|基于卷积神经网络结合极限学习机CNN-ELM的数据回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着人工智能技术的不断发展,基于深度学习的数据预测算法在各个领域得到了广泛的应用。其中,卷积神经网络(CNN)和极限学习机(ELM)是两种常见的深度学习模型,它们分别在图像处理和数据回归预测领域有着良好的表现。本文将介绍一种基于卷积神经网络结合极限学习机的数据回归预测算法流程,帮助读者了解这一先进的预测模型。

首先,我们来介绍一下卷积神经网络(CNN)。CNN是一种专门用于处理图像数据的深度学习模型,它通过卷积层、池化层和全连接层来提取图像中的特征,并进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域有着广泛的应用,其优势在于能够自动提取图像的特征,从而减少了人工特征工程的工作量。

接下来,我们介绍极限学习机(ELM)。ELM是一种单隐层前馈神经网络,其特点在于随机初始化输入层到隐层的连接权重和隐层到输出层的连接权重,然后通过解析解的方式快速求解输出层的权重。ELM在数据回归和分类问题上有着较好的泛化能力和快速的训练速度,因此被广泛应用于各种机器学习任务中。

基于以上介绍,我们将卷积神经网络和极限学习机结合起来,形成了一种新的数据回归预测算法流程。具体步骤如下:

  1. 数据准备:首先,我们需要准备用于训练和测试的数据集,确保数据集的质量和完整性。

  2. 卷积神经网络特征提取:利用卷积神经网络对输入数据进行特征提取,得到高维的特征表示。

  3. 特征压缩:将卷积神经网络提取的高维特征通过降维或其他方法进行压缩,以减少特征的维度和复杂度。

  4. 极限学习机回归预测:将压缩后的特征作为输入,利用极限学习机进行回归预测,得到最终的预测结果。

  5. 模型评估和优化:对预测模型进行评估,根据评估结果进行模型参数调优和性能优化。

通过以上步骤,我们可以得到基于卷积神经网络结合极限学习机的数据回归预测算法流程。这种算法流程能够充分利用卷积神经网络提取的特征和极限学习机的快速训练能力,从而在数据回归预测任务上取得较好的效果。

总之,基于卷积神经网络结合极限学习机的数据回归预测算法流程是一种先进的预测模型,其在数据预测领域有着广泛的应用前景。希望本文能够为读者提供一些有益的信息,帮助大家更好地理解和应用这一先进的算法流程。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 赵娜,秦琴,马振宇,等.基于卷积神经网络结合极限学习机的办公垃圾图像分类[J].信息与电脑, 2021(033-024).

[2] 潘晓明,周学良,吴琪文.基于改进卷积门控循环神经网络的刀具磨损状态识别[J].工具技术, 2023, 57(7):146-152.

[3] 李冰王宝亮由磊杨沫.应用并联卷积神经网络的人脸防欺骗方法[J].小型微型计算机系统, 2017, 038(010):2187-2191.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值