【LSTM分类】基于鲸鱼算法优化长短期记忆神经网络WOA-LSTM 实现数据分类预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

长短期记忆神经网络(LSTM)是一种常用于时间序列数据分析和预测的深度学习模型。它具有记忆和遗忘机制,能够有效处理长期依赖关系,因此在许多领域都有着广泛的应用。然而,传统的LSTM模型在处理大规模数据时存在着一些问题,例如收敛速度慢、局部最优解等。为了解决这些问题,我们可以借助鲸鱼优化算法(WOA)对LSTM模型进行优化,从而提高其性能和效率。

鲸鱼优化算法是一种基于鲸鱼群体行为模式的启发式优化算法,它模拟了鲸鱼群体的觅食行为和社会行为,具有较强的全局搜索能力和收敛速度。将其应用于LSTM模型优化中,可以有效地提高模型的分类和预测性能。

在使用WOA优化LSTM模型时,首先需要定义适应度函数,即评价模型性能的指标。通常可以选择分类准确率、F1值等指标作为适应度函数。然后,利用WOA算法对LSTM模型的参数进行调整和优化,以使模型在给定数据集上达到最佳性能。

WOA-LSTM模型的实现原理如下:首先,初始化鲸鱼群体的位置和速度,然后根据适应度函数对每条鲸鱼的位置进行更新,直到达到停止条件为止。在更新位置的过程中,需要考虑鲸鱼的搜索行为和社会行为,以保证全局搜索和局部搜索的均衡性。最终,得到经过WOA优化的LSTM模型,可以用于数据分类和预测任务。

通过实验验证,我们发现使用WOA优化的LSTM模型在处理大规模数据时具有更快的收敛速度和更高的分类准确率,相比传统的LSTM模型有着明显的优势。因此,WOA-LSTM模型可以应用于各种领域的数据分类和预测任务中,为用户提供更准确、更可靠的预测结果。

总之,基于鲸鱼算法优化的长短期记忆神经网络(WOA-LSTM)通过模拟鲸鱼群体的行为模式,能够有效提高LSTM模型的性能和效率,为时间序列数据分析和预测任务提供了一种全新的优化方法。在未来的研究中,我们将进一步探索WOA算法在其他深度学习模型中的应用,以提升模型的性能和泛化能力。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 仇焕青,陈曙光,龚芝,等.基于鲸鱼优化算法改进长短期记忆神经网络的资源推荐[J].济南大学学报:自然科学版, 2023, 37(3):309-315.

[2] 范怡静,刘真,苑佳,等.基于LSTM-NeuralProphet模型的城市需水预测方法研究[J].中国农村水利水电, 2023.

[3] 苏恩杰,叶飞,何乔,等.基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型[J].同济大学学报(自然科学版), 2023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值