✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
长短期记忆神经网络(LSTM)是一种常用于时间序列数据分析和预测的深度学习模型。它具有记忆和遗忘机制,能够有效处理长期依赖关系,因此在许多领域都有着广泛的应用。然而,传统的LSTM模型在处理大规模数据时存在着一些问题,例如收敛速度慢、局部最优解等。为了解决这些问题,我们可以借助鲸鱼优化算法(WOA)对LSTM模型进行优化,从而提高其性能和效率。
鲸鱼优化算法是一种基于鲸鱼群体行为模式的启发式优化算法,它模拟了鲸鱼群体的觅食行为和社会行为,具有较强的全局搜索能力和收敛速度。将其应用于LSTM模型优化中,可以有效地提高模型的分类和预测性能。
在使用WOA优化LSTM模型时,首先需要定义适应度函数,即评价模型性能的指标。通常可以选择分类准确率、F1值等指标作为适应度函数。然后,利用WOA算法对LSTM模型的参数进行调整和优化,以使模型在给定数据集上达到最佳性能。
WOA-LSTM模型的实现原理如下:首先,初始化鲸鱼群体的位置和速度,然后根据适应度函数对每条鲸鱼的位置进行更新,直到达到停止条件为止。在更新位置的过程中,需要考虑鲸鱼的搜索行为和社会行为,以保证全局搜索和局部搜索的均衡性。最终,得到经过WOA优化的LSTM模型,可以用于数据分类和预测任务。
通过实验验证,我们发现使用WOA优化的LSTM模型在处理大规模数据时具有更快的收敛速度和更高的分类准确率,相比传统的LSTM模型有着明显的优势。因此,WOA-LSTM模型可以应用于各种领域的数据分类和预测任务中,为用户提供更准确、更可靠的预测结果。
总之,基于鲸鱼算法优化的长短期记忆神经网络(WOA-LSTM)通过模拟鲸鱼群体的行为模式,能够有效提高LSTM模型的性能和效率,为时间序列数据分析和预测任务提供了一种全新的优化方法。在未来的研究中,我们将进一步探索WOA算法在其他深度学习模型中的应用,以提升模型的性能和泛化能力。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 仇焕青,陈曙光,龚芝,等.基于鲸鱼优化算法改进长短期记忆神经网络的资源推荐[J].济南大学学报:自然科学版, 2023, 37(3):309-315.
[2] 范怡静,刘真,苑佳,等.基于LSTM-NeuralProphet模型的城市需水预测方法研究[J].中国农村水利水电, 2023.
[3] 苏恩杰,叶飞,何乔,等.基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型[J].同济大学学报(自然科学版), 2023.