基于PID的双容水箱控制系统附Matlab代码 论文程序 新手专用

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

​在现代工业控制系统中,PID控制器是一种常见的控制算法,它被广泛应用于各种自动化系统中。而双容水箱控制系统是其中一个典型的应用案例。本文将介绍基于PID的双容水箱控制系统的原理、设计和应用。

首先,让我们来了解一下双容水箱控制系统的基本原理。双容水箱控制系统是用来控制两个水箱之间的水位的系统。其中一个水箱作为水的来源,另一个水箱则是水的接收端。控制系统的目标是通过调节水泵的工作来保持接收端水箱的水位在一个设定的范围内。这就需要一个能够根据水位变化来自动调节水泵工作的控制系统。

基于PID的控制系统是一种经典的控制算法,它由比例(P)、积分(I)和微分(D)三个部分组成。比例部分根据当前误差来调节控制量,积分部分根据误差的累积来调节控制量,而微分部分则根据误差变化的速度来调节控制量。这三个部分的组合能够使得控制系统对于不同的工作条件有着较好的适应性和稳定性。

在双容水箱控制系统中,PID控制器的作用是根据接收端水箱的水位变化来调节水泵的工作。当水位偏离设定值时,PID控制器会根据当前误差、误差的累积和误差变化的速度来计算出一个控制量,然后通过控制水泵的工作来调节水位。这样就能够实现对水位的自动调节,从而保持接收端水箱的水位在设定范围内。

设计一个基于PID的双容水箱控制系统需要考虑多个方面。首先是传感器的选择和安装,需要选择一种能够准确测量水位的传感器,并将其安装在接收端水箱中。其次是PID参数的调节,需要通过实验和仿真来确定合适的PID参数,使得控制系统具有良好的性能。最后是控制器的实现,需要选择合适的控制器硬件和编写控制算法的软件。

基于PID的双容水箱控制系统在工业自动化领域有着广泛的应用。它能够实现对水位的精确控制,提高了生产过程的稳定性和可靠性。同时,它还能够减少人工干预,降低了人力成本。因此,基于PID的双容水箱控制系统是一种非常实用的控制方案。

总之,基于PID的双容水箱控制系统是一种在工业自动化中具有重要意义的控制方案。它能够实现对水位的精确控制,提高了产过程的稳定性和可靠性。希望本文能够对您有所帮助,谢谢阅读!

📣 部分代码

function varargout = test(varargin)% TEST MATLAB code for test.fig%      TEST, by itself, creates a new TEST or raises the existing%      singleton*.%%      H = TEST returns the handle to a new TEST or the handle to%      the existing singleton*%%      TEST('CALLBACK',hObject,eventData,handles,...) calls the local%      function named CALLBACK in TEST.M with the given input arguments.%%      TEST('Property','Value',...) creates a new TEST or raises the%      existing singleton*.  Starting from the left, property value pairs are%      applied to the GUI before test_OpeningFcn gets called.  An%      unrecognized property name or invalid value makes property application%      stop.  All inputs are passed to test_OpeningFcn via varargin.%%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one%      instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help test% Last Modified by GUIDE v2.5 27-Feb-2020 20:13:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name',       mfilename, ...                   'gui_Singleton',  gui_Singleton, ...                   'gui_OpeningFcn', @test_OpeningFcn, ...                   'gui_OutputFcn',  @test_OutputFcn, ...                   'gui_LayoutFcn',  [] , ...                   'gui_Callback',   []);if nargin && ischar(varargin{1})    gui_State.gui_Callback = str2func(varargin{1});endif nargout    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else    gui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before test is made visible.function test_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject    handle to figure% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% varargin   command line arguments to test (see VARARGIN)% Choose default command line output for testhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes test wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line.function varargout = test_OutputFcn(hObject, eventdata, handles) % varargout  cell array for returning output args (see VARARGOUT);% hObject    handle to figure% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --------------------------------------------------------------------function Untitled_1_Callback(hObject, eventdata, handles)% hObject    handle to Untitled_1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties.%初始液面动画function axes1_CreateFcn(hObject, eventdata, handles)axis([0 1200 0 1200])% hObject    handle to axes1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    empty - handles not created until after all CreateFcns called% Hint: place code in OpeningFcn to populate axes1function kj1_Callback(hObject, eventdata, handles)% hObject    handle to kj1 (see GCBO)% eventdata  reserved - to be defined in a future version of MATLAB% handles    structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of kj1 as text%        str2double(get(hObject,'String')) returns contents of kj1 as a double% --- Executes during object creation, after setting all properties.

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

[1] 王维权,马阳,雷彦华,等.基于组态王与MATLAB的双容水箱液位模糊控制系统[J].工业控制计算机, 2014(3):2.DOI:10.3969/j.issn.1001-182X.2014.03.010.

[2] 纪亚芳,张志刚.基于模糊PID的双容水箱液位控制系统设计[J].山西师范大学学报:自然科学版, 2019, 33(2):4.DOI:CNKI:SUN:SFDX.0.2019-02-010.

[3] 郑敏.基于模糊PID双容水箱控制系统研究与应用[J].[2023-11-25].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值