✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
回归预测是一种重要的数据分析方法,它可以帮助我们预测未来的趋势和结果。在这篇博客中,我们将介绍基于北方苍鹰算法优化随机配置网络NGO-SCN的数据回归预测,这是一种多指标、多图的方法。
首先,让我们来了解一下北方苍鹰算法。北方苍鹰算法是一种新型的优化算法,它模拟了北方苍鹰在捕食过程中的行为,通过不断地调整自身的位置和速度来寻找最优解。这种算法具有很强的全局搜索能力和收敛速度快的特点,适用于解决各种优化问题。
随机配置网络NGO-SCN是一种基于神经网络的数据回归预测模型。它通过随机配置网络来建立输入和输出之间的非线性映射关系,从而实现对未知数据的预测。与传统的回归预测方法相比,NGO-SCN具有更好的泛化能力和预测精度。
在基于北方苍鹰算法优化随机配置网络NGO-SCN的数据回归预测中,我们首先需要确定需要预测的指标和数据集。然后,我们将利用北方苍鹰算法来优化随机配置网络的参数,以提高预测模型的准确性和稳定性。最后,我们将通过多个图表来展示预测结果,从而更直观地了解模型的表现。
通过这种方法,我们可以更准确地预测未来的数据趋势,帮助企业和决策者做出更明智的决策。同时,这种方法也可以应用于各种领域,如金融、医疗、环境等,为各行各业提供更精准的数据分析和预测能力。
总之,基于北方苍鹰算法优化随机配置网络NGO-SCN的数据回归预测是一种强大的数据分析方法,它结合了优化算法和神经网络模型的优势,可以帮助我们更准确地预测未来的数据趋势。希望这篇博客能给您带来一些启发,也欢迎大家分享自己的想法和经验。谢谢阅读!
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 陆军,丁进良.基于集成贝叶斯稀疏随机配置网络的预测区间建模方法[J].[2023-12-27].
[2] 裴诗雨.随机配置网络的结构优化研究[J].[2023-12-27].
[3] 宋江涛,崔双喜,刘洪广.基于二次分解NGO-VMD残差项与长短时记忆神经网络的超短期风功率预测[J].科学技术与工程, 2023, 23(6):2428-2437.