✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
本文提出了一种基于雾凇算法优化卷积神经网络结合支持向量机的数据回归预测模型。该模型将雾凇算法应用于卷积神经网络模型的权重优化,提高了模型的泛化能力和鲁棒性。同时,将支持向量机作为回归器,进一步提高了模型的预测精度。实验结果表明,该模型在多个数据集上取得了良好的预测性能,优于传统的卷积神经网络模型和支持向量机模型。
1. 引言
数据回归预测是机器学习领域的一项重要任务,广泛应用于图像处理、自然语言处理、金融预测等领域。近年来,卷积神经网络(CNN)和支持向量机(SVM)在数据回归预测方面取得了良好的效果。然而,传统的CNN模型往往存在过拟合问题,容易受到噪声和异常值的影响。SVM模型虽然具有较强的鲁棒性,但其预测精度往往不如CNN模型。
为了解决上述问题,本文提出了一种基于雾凇算法优化卷积神经网络结合支持向量机的数据回归预测模型。该模型将雾凇算法应用于CNN模型的权重优化,提高了模型的泛化能力和鲁棒性。同时,将SVM作为回归器,进一步提高了模型的预测精度。
2. 雾凇算法
雾凇算法是一种新型的优化算法,其灵感来源于大自然中雾凇的形成过程。雾凇算法具有以下特点:
-
**全局搜索能力强:**雾凇算法通过模拟雾凇的生长过程,能够在整个搜索空间中进行全局搜索,避免陷入局部最优。
-
**收敛速度快:**雾凇算法采用了一种新的搜索策略,能够快速收敛到最优解。
-
**鲁棒性强:**雾凇算法对噪声和异常值具有较强的鲁棒性,能够在复杂的环境下保持稳定。
3. 基于雾凇算法优化卷积神经网络
为了提高CNN模型的泛化能力和鲁棒性,本文将雾凇算法应用于CNN模型的权重优化。具体步骤如下:
-
初始化CNN模型的权重。
-
将CNN模型的权重作为雾凇算法的搜索目标。
-
根据雾凇算法的搜索策略,对CNN模型的权重进行优化。
-
重复步骤2和步骤3,直到雾凇算法收敛。
4. 基于雾凇算法优化卷积神经网络结合支持向量机
为了进一步提高模型的预测精度,本文将SVM作为回归器,与基于雾凇算法优化的CNN模型结合起来。具体步骤如下:
-
将基于雾凇算法优化的CNN模型作为特征提取器,提取训练数据的特征。
-
将提取的特征作为SVM模型的输入,训练SVM模型。
-
将训练好的SVM模型用于测试数据的预测。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
5. 实验结果
为了验证该模型的有效性,我们在多个数据集上进行了实验。实验结果表明,该模型在多个数据集上取得了良好的预测性能,优于传统的CNN模型和SVM模型。
6. 结论
本文提出了一种基于雾凇算法优化卷积神经网络结合支持向量机的数据回归预测模型。该模型将雾凇算法应用于CNN模型的权重优化,提高了模型的泛化能力和鲁棒性。同时,将SVM作为回归器,进一步提高了模型的预测精度。实验结果表明,该模型在多个数据集上取得了良好的预测性能,优于传统的CNN模型和SVM模型。
🔗 参考文献
[1] 郭昊,刘沛清,屈秋林,等.输电线雾凇覆冰过程的二维数值模拟[J].工程力学, 2011, 28(5):8.DOI:CNKI:SUN:GCLX.0.2011-05-036.
[2] Goldbaum M H , Kozak I , Hao J ,et al.Pattern recognition can detect subtle field defects in eyes of HIV individuals without retinitis under HAART[J].Graefes Archive for Clinical & Experimental Ophthalmology, 2011, 249(4):491-498.DOI:10.1007/s00417-010-1511-x.