【DELM回归预测】基于蜂虎狩猎算法改进深度学习极限学习机BEH-DELM实现光伏预测附Matlab代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

光伏预测在可再生能源的利用和电网稳定运行中至关重要。本文提出了一种基于蜂虎狩猎算法(BEH)改进的深度学习极限学习机(DELM)模型(BEH-DELM)用于光伏预测。BEH算法优化了DELM的超参数,包括隐藏层节点数、激活函数和正则化参数。实验结果表明,BEH-DELM模型在光伏预测任务上具有较高的精度和鲁棒性。

引言

光伏发电是一种清洁可再生的能源,具有广泛的应用前景。然而,光伏发电具有间歇性和波动性,给电网稳定运行带来挑战。光伏预测可以提前预测光伏发电量,为电网调度和储能系统提供决策依据。

极限学习机(ELM)是一种单隐层前馈神经网络,具有学习速度快、泛化能力强等优点。深度学习极限学习机(DELM)通过堆叠多个ELM层,可以提高模型的非线性拟合能力。

蜂虎狩猎算法(BEH)

蜂虎狩猎算法(BEH)是一种基于蜂虎狩猎行为的元启发式算法。BEH算法模拟了蜂虎在狩猎过程中探索和开发猎物的行为。

在BEH算法中,每个候选解表示为一个猎物,而蜂虎则表示为搜索代理。蜂虎通过探索和开发两个阶段来搜索最优解。在探索阶段,蜂虎随机搜索猎物。在开发阶段,蜂虎根据猎物的适应度值对猎物进行局部搜索。

BEH-DELM模型

BEH-DELM模型将BEH算法与DELM相结合,用于光伏预测。BEH算法优化了DELM的超参数,包括隐藏层节点数、激活函数和正则化参数。

实验

本文使用公开数据集对BEH-DELM模型进行了实验评估。数据集包含了光伏发电量、气象数据和历史光伏发电量数据。

实验结果表明,BEH-DELM模型在光伏预测任务上具有较高的精度和鲁棒性。与其他模型相比,BEH-DELM模型的平均绝对误差(MAE)和均方根误差(RMSE)更低。

结论

本文提出了一种基于蜂虎狩猎算法改进的深度学习极限学习机(BEH-DELM)模型用于光伏预测。BEH算法优化了DELM的超参数,提高了模型的预测精度和鲁棒性。实验结果表明,BEH-DELM模型在光伏预测任务上具有较好的性能,可以为电网调度和储能系统提供决策依据。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值