✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
光伏预测在可再生能源的利用和电网稳定运行中至关重要。本文提出了一种基于蜂虎狩猎算法(BEH)改进的深度学习极限学习机(DELM)模型(BEH-DELM)用于光伏预测。BEH算法优化了DELM的超参数,包括隐藏层节点数、激活函数和正则化参数。实验结果表明,BEH-DELM模型在光伏预测任务上具有较高的精度和鲁棒性。
引言
光伏发电是一种清洁可再生的能源,具有广泛的应用前景。然而,光伏发电具有间歇性和波动性,给电网稳定运行带来挑战。光伏预测可以提前预测光伏发电量,为电网调度和储能系统提供决策依据。
极限学习机(ELM)是一种单隐层前馈神经网络,具有学习速度快、泛化能力强等优点。深度学习极限学习机(DELM)通过堆叠多个ELM层,可以提高模型的非线性拟合能力。
蜂虎狩猎算法(BEH)
蜂虎狩猎算法(BEH)是一种基于蜂虎狩猎行为的元启发式算法。BEH算法模拟了蜂虎在狩猎过程中探索和开发猎物的行为。
在BEH算法中,每个候选解表示为一个猎物,而蜂虎则表示为搜索代理。蜂虎通过探索和开发两个阶段来搜索最优解。在探索阶段,蜂虎随机搜索猎物。在开发阶段,蜂虎根据猎物的适应度值对猎物进行局部搜索。
BEH-DELM模型
BEH-DELM模型将BEH算法与DELM相结合,用于光伏预测。BEH算法优化了DELM的超参数,包括隐藏层节点数、激活函数和正则化参数。
实验
本文使用公开数据集对BEH-DELM模型进行了实验评估。数据集包含了光伏发电量、气象数据和历史光伏发电量数据。
实验结果表明,BEH-DELM模型在光伏预测任务上具有较高的精度和鲁棒性。与其他模型相比,BEH-DELM模型的平均绝对误差(MAE)和均方根误差(RMSE)更低。
结论
本文提出了一种基于蜂虎狩猎算法改进的深度学习极限学习机(BEH-DELM)模型用于光伏预测。BEH算法优化了DELM的超参数,提高了模型的预测精度和鲁棒性。实验结果表明,BEH-DELM模型在光伏预测任务上具有较好的性能,可以为电网调度和储能系统提供决策依据。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类